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Introduction:  Mars has a protracted igneous his-

tory and a crust largely composed of basaltic rocks and 
sediments. Diverse, igneous compositions revealed by 
remote sensing, meteorites, and landed missions indi-
cate that ancient Mars differentiated and experienced 
varied igneous processes that generated heterogenous 
distributions of volatile and incompatible elements. 
With time, planetary cooling thickened Mars’ litho-
sphere and led to lower volume partial melts [1], while 
stabilizing convective upwelling beneath the Tharsis 
volcanic province [2].  

Mars’ Igneous Compositions: The array of Mars’ 
known igneous compositions is presented in Figure 1. 
Tholeiitic to alkali basalt compositions are thought to 
form by varying degrees of partial melting of a nearly 
anhydrous mantle [3]. More evolved, higher SiO2 mag-
mas fractionated from those at varying depths [e.g., 4]. 

 
Fig 1. Total alkali vs. SiO2 (TAS) diagram of Mars’ igneous 
rocks [5-12]. Thermal Emission Spectrometer (TES) field 

represents its highest point density [3]. 
 

Orbital datasets. Elemental and mineralogical infor-
mation retrieved from gamma ray and infrared global 
data sets show that low-dust regions of Mars are basaltic 
[13, 14] with regional mineralogical variations on the 
order of ~10% of plagioclase, high-Ca pyroxene (HCP), 
low-Ca pyroxene (LCP), olivine and poorly crystal-
line/amorphous (likely secondary) phases [13]. Abun-
dances of K and Th are higher than those in martian me-
teorites, although the abundance ratio is similar [15]. 

Meteorites. More than 120 meteorites are linked to 
Mars through trapped martian atmospheric gases and 
similar geochemical characteristics [e.g., 16]. Over 80% 
of the meteorites are alkali-poor basaltic igneous rocks 
that crystallized 165-600 Ma as flows or shallow intru-
sions (shergottites). Two others, NWA 7635 and NWA 
8159, are ~2400-Ma, augite-rich basalts that are chemi-
cally distinct from the shergottites [17]. An additional 
15% of the martian meteorites are clinopyroxene and ol-
ivine cumulates (nakhlites and chassignites), which 
were comagmatic at ~1300 Ma [e.g.,  19]. Thus, nearly 
all of the meteorites are Amazonian-aged, alkali-poor 
mafic to ultramafic igneous rocks (‘SNCs’ of Fig. 1). 
The predominance of such rocks among martian mete-
orites likely reflects the fact that only impacts can de-
liver rocks from Mars to orbit, and only more compe-
tent, unaltered (=young) igneous rocks survive impact 
[e.g., 20]. Nevertheless, the bulk composition of Mars 
derived from their geochemistry [21] has been corrobo-
rated by remotely-sensed data [15] and is similar to that 
of the Earth, but enriched in volatiles, including alkalis. 

The only martian meteorites older than the Amazo-
nian are the ALH84001 orthopyroxene cumulate (4100 
Ma; [22]), and some clasts and mineral grains in the 
NWA 7034 (and pairs) regolith breccia [23]; its zircons 
are as old as 4400 Ma, although the breccia was an-
nealed at ~1500 Ma [23].  

Landed missions. Alpha Particle X-Ray Spectrome-
ters (APXS [24]) have been flown on four Mars rover 
missions, which allows direct comparisons of their anal-
yses. Most soils analyzed by landed missions since Vi-
king are basaltic [25, 26]. A few soils analyzed in Gusev 
crater are sulfatic or silicic [27]. The Pathfinder mission 
in Chryse Planitia analyzed basaltic to andesitic rocks, 
but these may be weathered basalt [5].  

The Mars Exploration Rover (MER) Spirit exam-
ined relatively unaltered basalts in Gusev crater, includ-
ing subalkaline to alkaline olivine and pyroxene-bearing 
lithologies of likely Hesperian age [28]. The MER Op-
portunity in Meridiani Planum identified a shergottite-
like, pyroxene-rich exotic called BounceRock [12]. 

The Mars Science Laboratory (MSL) Curiosity 
rover in Gale crater has mainly encountered sedimen-
tary rocks, which include conglomerates with feldspar-
rich igneous clasts, and also igneous float rocks [29]. 
The Jake M class rocks were classified as mugearites 
[5], but corrected, dust-free compositions are phonolitic 
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to trachyandesitic-trachydacitic (higher silica and alka-
lis) [12]. Some relatively unaltered basaltic sediments 
(Bathurst Inlet class) [30], and components in other sed-
iments [31] have K2O up to 3.7 wt%, and are thought to 
imply alkaline igneous source rocks [31].  

Pre-Noachian Mars: There is general consensus 
that Mars had a magma ocean early in its history [e.g., 
32], an inference based principally on the short- and 
long-lived radiogenic isotopic characteristics of the 
shergottites [e.g., 33]. Though young, the shergottites 
preserve evidence of geochemically distinct mantle 
sources that formed as early as 25 Ma after accretion; 
these distinct sources are consistent with magma ocean 
crystallization. The crust and the primordial atmosphere 
may have formed in the following 15 Ma [34]. Enriched 
and depleted mantle sources are generally oxidized and 
reduced, respectively [e.g., 35]. Estimated fO2 varia-
tions among the Gusev basalts are consistent with those 
observed in the shergottites [36].  

The NWA 7034 regolith breccia provides our only 
view of lithologic diversity of Mars’ ancient crust. It in-
cludes clasts of basalt, basaltic andesite, trachyandesite, 
and an Fe-Ti-P rich lithology [9, 23]; a 4400 Ma zircon 
sits in an alkali-rich basaltic clast, confirming the pres-
ence of alkali volcanism on early Mars [23]. The petro-
genesis of the NWA 7034 breccia is dominated by rela-
tively water-poor, impact-generated episodic lithifica-
tion and provides novel insights into processes that 
dominated the southern highland crust [23].  

Evolving Interior: Relative to Noachian surfaces, 
Hesperian volcanic provinces in the highlands exhibit a 
lower abundance ratio LCP:(LCP+HCP) [13], con-
sistent with lower degrees of partial melting, caused by 
a cooling mantle and thickening lithosphere [37]. Hes-
perian highland volcanic terrains have relatively low K 
(and Th to a lesser extent) relative to Noachian crust; 
together, these observations suggest that the Noachian 
crust was built by a more complex set of processes than 
acted in the Hesperian, including varying degrees of 
partial melting and magmatic differentiation [13]. Mov-
ing forward in time, Amazonian volcanic provinces are 
geochemically distinct from Hesperian highland vol-
canic terrains, with lower SiO2 and higher Th, both of 
which are consistent with continued mantle cooling, 
thickening crust and smaller melt fractions [1].  

A thicker lithosphere insulates the Mars interior and 
slows cooling, meanwhile preserving ancient heteroge-
neities [2], including LREE-depleted, LREE-enriched, 
and alkali metasomatized domains later sampled by ba-
saltic magmas, as evidenced by shergottite, nakhlite par-
ent magma, Gusev basalt, and Gale igneous composi-
tions [e.g., 31, 33, 38, 39]. 

Feldspar-Rich Crustal Rocks: Rare areas of feld-
spar-rich crust have been detected from orbit [40] and 

the presence of feldspar-rich lithologies in Gale crater 
has been interpreted as evidence of  ancient silicic crust 
[41]. Feldspar-rich lithologies may instead be anortho-
sites [42] or fractionally crystallized basaltic magmas 
[43]. The evolved Jake M composition also likely frac-
tionally crystallized at depth [4, 12]. Thus there is no 
need to invoke repeated assimilation and fractional crys-
tallization as is essential for continental crust formation.  

Conclusions: The desire to return samples from 
Mars originates from Apollo, which demonstrated the 
immense value of samples collected within context. 
Well-characterized igneous materials from a not yet 
sampled period of Mars history (Noachian or Hespe-
rian) would yield insights to the mantle state and com-
position at that time, and contribute to our understand-
ing of the long-term petrological and geochemical evo-
lution of the planet. 
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