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Introduction: Change detection is 
an analytical tool of Remote Sensing in 
which repeat observations of a particular 
location can be overlain, subtracted, or 
ratioed to detect differences between 
images. High-resolution, repeat imagery 
on Mars has led to several discoveries of 
ongoing geologic processes operating at 
the sub-kilometer scale such as recurring 
slope lineae (RSL) [1-3], new, small 
impacts [4], aeolian dune migration [5], 
sublimation of polar ice [6], and gully 
formation [7]. Generally, the detection of 
these changes is done manually by 
overlaying, and “flipping” between the 
two images. As planetary remote sensing 
data sets continue to grow, so does the 
need for a more efficient means of change detection.  

 Principle component analysis (PCA) offers a 
advantageous means for detecting change because it 
considers the values of all pixels in all the repeat 
images to extract the most statistically significant 
variations. These variations are then isolated from one 
another as a hierarchical set of “principle components” 
of the image dataset. The user can quickly identify 
patterns or features of interest which are present in one 
or more of these components. To illustrate this method, 
nine HiRISE images [8] collected from Palikir crater on 
Mars between November 2007 and June 2011 
documenting RSL formation (Fig. 1) will be used. The 
method is herein referred to as “change detection via 
PCA of stacked time-series” or CDPCAST.  

Generating a Time-series Stack: Preprocessing 
involves image calibration (converting camera data into 
reflectance; optional if same camera is used in all im-
ages), orthorectification (removing geometric distortion 
associated with viewing angle and topography), and co-
registration (aligning images of the same location so 
that they perfectly overlap). In addition to these initial 
steps, CDPCAST requires that each image in a time-se-
ries be of the same extent and resolution and aligned 
(via coregistration) so that they can be “stacked” into a 
single, time-series image file. Fig. 1 shows each of the 
preprocessed, uncalibrated HiRISE images in the final 
image stack with source image ID given in yellow. Axis 
labels indicate numbers of pixels, and the color bar in-
dicates the pixel values. Each image has a resolution of 
0.25 m/pixel.  

PCA: PCA is a common data reduction method 
employed in the field of remote sensing, but is most of-
ten applied to multi- or hyper-spectral images in order 

to distinguish between different materials in an image 
by accentuating differences in reflectivity at different 
wavelengths of light. The CDPCAST method, in con-
trast, performs a PCA on a stack of images taken at the 
same wavelength at many different times. Although 
prior studies have employed PCA as a means of change 
detection on Earth [11-13], the remote sensing commu-
nity has focused more on alternative methods [14].  

PCA changes the values of the pixels in each image 
by plotting the pixel data on a set of axes which capture 
the maximum variance in the dataset. In our example 
dataset, each pixel in the image stack can be treated as a 
9-dimensional vector since there is a value for that pixel 
in each of the nine images. However, because many pix-
els experience little change between images, there is re-
dundancy in the stacked image data that can be reduced 
by plotting the pixel data on a new set of axes that cap-
ture the most important, or PCs of the image stack. 

Results: Fig. 2 shows the result of the PC transform 
(performed using ENVI® software) on the stacked 
time-series. Because most of the variation in the images 
is captured in the first PC (PCA1), it is colored accord-
ing to the color bar given in Fig. 1. Generally, variations 
covering a large spatial extent or variations causing a 
big shift in pixel values will be captured in the lower 
PCA components. Higher components, on the other 
hand, will depict smaller amplitude variations occurring 
in fewer images (or over smaller spatial extents). Thus, 
components 2 and 3 (Fig. 2b and 2c, respectively) are 
dominated by variations caused by differences in light-
ing (sun direction and elevation angle) and possibly dust 

Fig. 1. HiRISE time-series image stack of the southeaster wall 
of the 16 km-diameter Palikir Crater (41.65S, 202.71E), Mars. 
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or frost deposition/erosion. RSL features are identifia-
ble in PCA4 (Fig. 2d) as elongated blue “fingers” and 
become more dominant and appear red in PCA5 (Fig. 
2e). Subsequent components capture smaller variations 
caused either by changes in lighting, RSL shape (in 
PCA 8 and 9), or camera noise.  

Mapping PCA Features to Original Images:  
Having identified PCs 4, 5, 8, and 9 as containing the 
feature of interest, the next objective is to identify which 
of the original images contain RSL. While this task is 
trivial for a small number of images, ongoing data col-
lection may result in dozens of images in certain loca-
tions [15]. Before image attribution can be performed, 
the user must first construct a “feature vector” (f) whose 
elements (=0 if feature is not present, =1 if feature is 
present, =-1 if feature is present, but pixel values in-
verted relative to the PC in which the feature is first 
found) correspond to each of the PCs. Because PCA1 is 
the average image of the dataset, it is the reference from 
which changes are revealed and will always be set to 
zero. Once the feature vector has been determined, we 
can quantify the potential (p) of an original image con-
taining the feature via the following equation: 𝑝 =
𝐸𝑓 𝜆 where E is the matrix whose columns contain the 
orientation of the PC axes in image data coordinates and 
𝜆 is a vector giving the variance of the image data 

along each PC. 
In practice, determining the elements of f can be 

ambiguous. For example, RSL in PCA8 (Fig. 2h) appear 
blue, which is the same coloration of RSL in PCA4 (the 
first PC in which RSL are distinct), so the 8th element of 
f should be 1. Solving for p in this instance (solid line in 
inset of Fig. 3) results in images (a), (g), (h), and (i) (see 
Fig. 3) having the highest probability of containing 
RSL. While this is a successful result, image (f) also 
contains small, insipient RSL, but is given a low proba-
bility. Closer inspection of PCA8 reveals that small, in-
sipient RSL are colored red instead of blue – suggesting 
f[8]=-1. Updating the calculation of p (dotted line in Fig. 
3 inset) gives a more favorable probability for image (f).  

Due to uncertainty in determining the 
presence of the feature in a given PC, 
determining which images in the time-
series stack that are responsible for the 
variations revealed in the PCA is the po-
tentially unreliable part of the 
CDPCAST method and requires some 
caution. However, the method is relia-
ble in predicting which images contain 
the most prominent RSL.  
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Fig. 2. Nine components of the PCA transfor-
mation of the image time-stack. PCA1 (a) uses 
the gray color scale used in Fig. 1 due to its large 
variation in pixel values. Components 4, 5, 8, & 
9 (d, e, h, & i) contain RSL. 

Fig. 3. Cropped sections of images containing RSL (from Fig. 
1). Inset gives “feature probability” value (p) for all images. 
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