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1Colorado Center for Astrodynamics Research, University of Colorado, Boulder, CO 80309-431, 2LMGC, Université
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By means of extensive three-dimensional contact
dynamics simulations, we analyse the strength prop-
erties and microstructure of a granular asteroid, mod-
elled as a self-gravitating cohesive granular aggregate
composed of spherical particles, and subjected to di-
ametrical compression tests. We show that, for a
broad range of system parameters (shear rate, cohe-
sive forces, asteroid diameter), the behaviour can be
described by a modified inertial number that incorpo-
rates interparticle cohesion and gravitational forces.

Contact Dynamic Method: We will use the Con-
tact Dynamic Method [1, 2, 3], that is a type DEM,
originally developed by J.-J. Moreau in Montpellier, in
which particles are assumed to be perfectly rigid and to
interact through mutual exclusion and Coulomb fric-
tion. The frictional contact interactions are described
as complementarity relations between the relative ve-
locities between particles and the corresponding mo-
menta at the contact points. The condition of geo-
metrical contact between two particles is expressed by
the following mutually exclusive alternatives, known
as “Signorini’s conditions“:

fn ≥ 0 and un = 0,
fn = 0 and un > 0.

(1)

where fn is the normal contact force and un the rela-
tive normal velocity. un is counted positive when the
particles move away from each other. In the same way,
the Coulomb friction law involves the following three
mutually exclusive conditions:

ft = −µfn and ut > 0,
−µfn ≤ ft ≤ µfn and ut = 0,

ft = µfn and ut < 0,
(2)

where ut is the sliding velocity at the contact, µ is the
friction coefficient and ft is the friction force. Notice
that none of the relations 1 and 2 can be reduced to a
(mono)valued functional dependence between the two
variables as assumed in the more common Soft-Sphere
DEM (SSDEM). Hence, the only material parameter
required within the CD-method is the particle-particle
coefficient of friction µ, whereas in SSDEM packings
are also characterised by normal and tangential stiff-
nesses as well as viscous damping parameters.

Procedure: First, we build a large sample of
10000 spherical particles under isotropic compression
inside a box. The particles have a diameter d ∈
[0.6dmax, dmax], with a uniform distribution per vol-
ume fraction. Friction, cohesion and gravitational
forces are not yet activated. Density ρ0 of the parti-
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Figure 1: Snapshots of a simulated granular asteroid under
diametrical compression for εh = 0 (a) and εh = 0.1(b).
Forces chains are represented by lines joining the centres of
two touching particles. Compressive forces in red, tensile
forces in blue.

cles is fixed to 3200kg/m3. We extract spherical ag-
glomerates of diameter D from this sample compris-
ing nearly Np = 5000 particles. In order to analyse
the effect of aggregate size, four aggregates were built,
with dmax ∈ [3, 6, 12, 18]m, so D is approximately
[50, 100, 190, 375]m. Then, the friction coefficient is
fixed to 0.4, cohesive forces, modelled as a constant
reversible attractive force −f0 with a short range ac-
tion of the order of 0.01d, are activated. Gravitational
forces are represented by Fg0 = πd3ρ0g0r/(6D) act-
ing on the centre of each particle at a distance r of the
centre of the aggregate and pointing towards it. The
aggregates are then subjected to diametrical compres-
sion between two platens, with a prescribed velocity
Vwall = γ̇D (see Fig. 1(a)). Iη and η were varied be-
tween [5.10−4, 0.1] and [0.1Pa, .., 100MPa], respec-
tively. We performed simulations for a broad range of
combinations of these two parameters for both, non-
gravitational and gravitational aggregates. When grav-
itational forces are included, P0 increases with D,
from ∼ 0.48Pa, to ∼ 30Pa.

During diametrical compression, the vertical stress
σzz acting on an aggregate is given by 4F/πD2, where
F is measured on the platen.

Figure 2 shows σzz as a function of the axial defor-
mation εh for η = 1Pa,D = 50m and different values
of Iη , and for Iη = 5 × 10−4 with different values of
η (inset). εh is the classical cumulative vertical defor-
mation defined by ∆D/D with ∆D =D−Dt withDt

the height of the wall at the time t. As a general ob-
servation, at small Iη values, the stress-strain curve is
well defined and has very small deviations around the
mean. The stress increases to a peak value at small
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Figure 2: Typical curve showing the vertical strength as
a function of the cumulative vertical deformation for η =
1Pa, D = 50m and various values of Iη (gravitational
forces are not activated). The inset shows the same curve
for Ic = 5.10−5, η = {1, 3, 10, 30, 50}Pa for D = 190m
considering gravitational forces.
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Figure 3: Peak stress σ∗zz normalized by the cohesive stress
η as a function of Iη (a) without gravitational forces (i.e.
Ig0 = 0), and (b) with gravitational forces (i.e. Ig0 6= 0), in
which only one or two parameters were varied.

strain (≈ 2%) before relaxing to a constant plateau
(plastic behaviour) at larger strain. Deformations are
localised in the vertical plane of the aggregate, where
compressive force chains are mainly vertical and ten-
sile force chains lie horizontally (see Fig. 1(b)). This
ductile behaviour results from particle rearrangements,
dissipation due to friction and the short-range action
of cohesive forces. As Iη increases, fluctuations in
the stress-strain responses increase both in number and
magnitude revealing a dynamical crisis. Thus, in the
following we consider only results for Iη < 0.035 for
non-gravitational aggregates and Iη < 0.1 for gravita-
tional ones; the peak stress σ∗zz is defined as an average
stress around a deformation of 2%.

In the absence of gravitational forces, we naturally
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Figure 4: Peak stress σ∗zz normalised by additive stress p =
η + αP0 as a function of the modified inertial number I ′ for
the raw data (color coding as in Fig 3). Error bars represent
the standard deviation around the peak state.

expect σ∗zz to scale with η since cohesion is homoge-
neously distributed in all contacts. This is well ob-
served in Fig. 3(a) for a wide range of values of Iη , η
and D. In contrast, when gravitational forces are ac-
tive, the scaling with η is not verified (see Fig. 3(b)).
This is because the effect of gravity is to increase the
local stresses acting on the particles, so that interpar-
ticle tensile strength and interior stresses become ad-
ditive. We can thus postulate that the mean pressure
is p = η + αP0, where α is a weight parameter that
represents the stress gradient produced by the radial
variation of the gravitational field inside an aggregate.
A similar approach has been used for the scaling of
shear stresses in dense suspensions [4, 5] and in co-
hesive granular flow [6], where the fluid or cohesive
forces and grain stresses are responsible for the effec-
tive friction angle. Accordingly, the inertial number
can be re-written as:

I ′ = γ̇d

√
ρ0

η + αP0
=

Iη√
1 + αλ−1

=
Iη.Ig0√
I2g0 + αI2η

(3)

Figure 4 shows σ∗zz normalised by (η + αP0) as a
function of I ′, for α = 0.48. We observe the col-
lapse of all our simulation data with a pre-factor' 0.9
for small I ′ values. This pre-factor (and fluctuations
around the mean) increases with I ′ to 1.3 in the range
of values tested here, evidencing the dynamical crisis
resulting from the destabilising effect of particle iner-
tia. More details published in [7].
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