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Introduction: Libration data show that Enceladus 

has a global ocean with a mean ice thickness of around 
20 km [1]. Earlier gravity data [2] and topography data 
[3] show that the gravity anomalies at degree 2 and 3 
require substantial compensation, meaning that the ice 
is much thicker at the equator than this average, with a 
maximum thickness of around 30km. This is a problem 
because the underside topography of the ice shell will 
relax by lateral viscous flow. In order to maintain 
constant thickness with time at that location, there 
must be continuous freezing of water to compensate 
for the viscous thinning. (In a global steady state, there 
is a compensating melting of ice in other regions, 
especially the poles where tidal heating is presumably 
stronger). The latent heat release from this freezing 
must then be accommodated by conduction through the 
shell, leading to a prediction for the ice thickness. Even 
in the extreme case of no tidal heating where the ice is 
thickest, the predicted steady state ice thickness at that 
location should be  ~20 km or less and only weakly 
sensitive to the ice viscosity [4]. This inconsistency 
between theory and observation has two possible 
explanations (1) A much higher viscosity than is 
usually attributed to water ice at the melting point 
(around 1014 Pa.s), (2) A non-steady state for 
Enceladus.  Although the stresses are very low, 
existing data do not support the much higher viscosity, 
especially since that model requires the ice that is 
flowing to be recently formed by freezing and have 
small grain size. We accordingly focus here on non-
steady state. There are specific models in which the 
average ice shell thickness varies with time on million 
year timescales, coupled to variations in the orbital 
eccentricity. The most recent example of this is a 
proposed limit cycle [5] but here we focus on a more 
general approach in which we pose and answer the 
following question: What are the consequences of a 
non-steady state thermal profile in the ice shell? If the 
temperature gradient near the base of the ice is steeper 
than steady state then the viscous thinning is much 
reduced, so this motivates consideration of a model in 
which the shell is currently thinning.  In particular, we 
consider the case where Enceladus was previously in 
steady-state, but had a much thicker shell. 
Subsequently, the body was perturbed, perhaps by an 
increase in the eccentricity, generating an increase in 
tidal heating  

 
 

Model: To carry out the model, we solve the 1-D 
non-steady heat equation, 

€ 

∂T
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= κ
∂ 2T
∂z2

, 

where 

� 

κ  is the thermal diffusivity of ice, subject to a 
moving boundary condition at the base of the ice shell:  

€ 

T(0,ho − vt) = Tm =1(setting the melting temperature 
equal to 1 for convenience). The other boundary 
condition is 

€ 

T(0,t) = Ts = 0 (also set to 0 for 
convenience). The initial condition is given by 

€ 

T(z,0) = z /ho. Here h0 is the initial thickness of the 
shell. We consider the case of a thinning shell  
(positive 

� 

v ). To solve this moving boundary problem, 
we non-dimensionalize the heat equations and its 
boundary conditions with lengths measured in terms of 
h0, velocities measured in terms of 

� 

κ /ho , and time in 
units of 

� 

ho
2 /κ . In addition, we remove the moving 

boundary condition, by introducing the new variable, 
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ξ = z /(1− vt) , whence 
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with 

� 

T(0,t) = 0, 

� 

T(1,t) =1, and 

� 

T(ξ,0) = ξ . We are 
free to prescribe any value for the velocity v, and 
initial ice thickness, h0.  

Results: Figure 1 below provides an example 
computation of the evolution of the temperature profile 
at equal time intervals of ~ 235 ka for a velocity of 
0.71 cm/yr and initial ice thickness of 40 km. (a) 
corresponds to the evolution of the profile between 0 
Ma and ~1 Ma, while (b) corresponds the profiles 
between ~1 Ma and ~2.3 Ma. The straight line 
corresponds to the initial linear profile, while the one 
with the largest curvature corresponds to the 
temperature profile at the latest time of ~2.3 Ma or, 
equivalently, an ice thickness of 25 km.  

 
Figure 1: Evolution of the temperature profiles for velocity = 0.71 
cm/yr) and initial ice thickness of 40 km. Note that the profile 
approaches a self-similar value after about 1 Ma. Here the z 
coordinate is the scaled length

€ 

ξ. 
The separation of the profiles is to both accentuate 

the rapid steepening that occurs initially and highlight 

2233.pdf50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132)



the establishment of self-similarity at about 1 Ma. The 
effect of this steepening of the temperature gradient at 
the base of the shell is to concentrate the largest 
temperatures over a more narrow region, leaving a 
majority of the ice cold, and rigid. As a result, the total 
lateral flux of ice decreases until the profile nears self-
similarity, at which point the flux approaches a 
constant.  

Having established the evolution of the temperature 
profile, for a given total, prescribed velocity, we are 
able solve directly for the velocity component due to 
viscous flow as well as the component due to 
freezing/melting. We first assume that ice flow is 
restricted to the region near the base where the ice 
remains between melting point, and the 80% of its 
value (218 K), and approximate the profile between 
these two points as linear: 

� 

T(z) = M(z −zo) +Tm , where 
M is the slope of the profile and 

� 

zo= ho − vt , is the 
total thickness of the shell at time t. This 
approximation allows us to solve for the viscosity of 
the ice as a function of depth,   
 

� 

η(z) ≈η(Tm )exp(
AM
Tm

(zo − z)). 

Next, in direct analogy with the crustal flow 
problem studied in [6], the rate of change of thickness 
of the shell due to flow is found, using the continuity 
relation: 
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Figure 2 shows the flow velocity and melt/freeze 

velocity at the equator for the same model parameters 
in Figure 1. Initially, the flow velocity drops off 
rapidly due to the large mismatch between thermal 
diffusion and the rate at which the shell is receding. 
However, after about 1 Ma, the flow velocity becomes 
steady. In total, it takes bout 2.3 Ma for the shell to 
reach an ice thickness of 25 km, close to the desired 
result for the current shell thickness at the equator.  

  
Figure 2: (a) Evolution of the velocities due to flow and 
freezing/melting as a function of ice thickness. (b) Evolution of the 
velocities as a function of time. 
 

Discussion/Conclusion: The model we selected for 
Figure 2 is somewhat arbitrary but illustrates the 
crucial role of the temperature profile in the ice. If the 
temperature gradient in the ice nearest the ocean is 
much steeper than the average profile throughout the 
ice then the viscous thinning can be reduced by an 
order of magnitude. An interesting consequence of this 
result is that the velocity component due to freezing is 
much reduced, even becoming positive (implying 
melting) at the point in time where the flow velocity 
falls below the total prescribed value. It is unclear 
whether this leads to any conclusion concerning the 
location of the tidal heating. 

 Our model does not necessarily address the 
problem of tidal heating in the ice itself and does not 
fit with the limit cycle model proposed by Luan and 
Goldreich (2016), which is based on cyclic, 
eccentricity driven changes in the amount of tidal 
heating in the shell. Also, their model suggests 
Enceladus is currently thickening rather than thinning. 
We could have started with a thinner shell, and 
prescribed a negative velocity (thickening) but the ice 
would readily flow away to those regions of low 
topography, requiring an unreasonably large velocity 
component due to freezing to compensate.  

Our model is consistent with a majority of the tidal 
heating being concentrated in the core [7], as all of the 
heat would eventually be conducted to the shell via the 
ocean. We reserve caution in justifying our model on 
core heating alone as tidal heating in the shell is likely 
to be significant. Despite these apparent difficulties in 
mechanically substantiating our model, it is clear that it 
does permit solutions where the present day ice 
thickness is closer to its true value than the steady-state 
case.   
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