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Introduction:  The lunar norites collected as Apollo 

17 samples 78235, 78236 and 78238 at station 8 in the 

Taurus-Lithrow Valley are igneous orthopyroxene-pla-

gioclase cumulates with a strong KREEP signature [1]. 

Since the earliest petrographic descriptions, these nor-

ites were recognized as "the most heavily shocked" 

rocks in the Apollo collection [e.g. 2,3]. Shock effects 

include brecciation, mosaicism, undulatory extinction 

and shock lamellae in pyroxene along with transfor-

mation in plagioclase to diaplectic glass or melt, which 

implies peak shock-pressures in excess of 50 GPa and 

the overall extent of shock deformation of stage S5 and 

S6 [3, 4]. Importantly, all previous studies conclude that 

the texture of these rocks records only one major impact 

event [e.g. 2, 3]. Recent studies of whole rock and major 

mineral separates [5] found that the crystallization age 

of the shocked norite, based on Pb-Pb systematics, is 

4333 ± 59 Ma, which is concordant with a Sm-Nd age 

of 4334 ± 37 Ma, and also a number of previous studies 

(summarized in [6]). However, significant disturbance 

in Rb-Sr isochron is explained by the heavy shock his-

tory of the rock [5]. A recent in situ Pb-Pb study of bad-

deleyite found a spread of relatively old ~4.2 – 4.3 Ga 

ages for which the authors proposed a scenario of a 

weak, second impact [7]. Recent Ar-Ar age of 4188 ± 

13 Ma, concordant with earlier Ar-Ar studies [8 and 

refs. therein] ties very well with the abovementioned 

ages.  

Motivation:  Inspired by recent observations of dis-

turbance of Pb-Pb and U-Pb systematics in various 

shock-affected accessory minerals [e.g. 9, 10], we de-

termined in situ ages of phosphates in norites 78235 & 

78236. The choice of samples is based on our previous 

electron backscatter diffraction (EBSD) study [4], 

where we observed high intra-grain crystal-plastic de-

formation (S5) and recrystallization (S6) in apatite and 

merrillite. Furthermore, to better understand the effects 

of shock-induced microstructure on the U-Pb system, 

we performed atom probe tomography (APT) and trans-

mission electron microscopy (TEM) of one highly-

shocked (S5) apatite grain.  

Methods:  U-Pb isotopic measurements were per-

formed using a CAMECA 1280 ion microprobe at the 

NordSIMS facility, located at the Swedish Museum of 

Natural History (Stockholm), following previously re-

ported protocols for Ca-phosphate analyses [e.g. 11]. 

Eight apatite and ten merrillite grains were analyzed in 

the two thin sections. APT and TEM work on the se-

lected apatite grain in 78236 was performed at the JdLC 

in Curtin University, Perth. We analyzed eight APT tips 

from a single lift out and one TEM foil in this study. 

U-Pb ages of 78235 & 78236 phosphates:  Individ-

ual 207Pb/206Pb SIMS ages range from 4236  ± 29 (2σ) 

Ma to much younger ages, implying substantial Pb loss 

in both apatite and merrillite. A Tera-Wasserburg dia-

gram of these U-Pb analyses (Fig. 1) reveals that all an-

alyzed grains fall on a discordia line with an upper in-

tercept of 4204 ± 35 Ma (2σ) and a lower intercept of 

498 ± 18 Ma (2σ). The upper intercept phosphate age is 

~100 Ma younger than what was interpreted as crystal-

lization Pb-Pb ages of baddeleyite in this sample [7] but 

also of baddeleyite in the unshocked troctolite 76535 

[13]. The upper intercept age is broadly observed in 

Figure 1. Tera-Wasserburg diagram of U-Pb isotopic composi-

tion in 18 phosphate grains from 78235 and 78236 norites. The 

upper and the lower intercept are annotated. Regression is not 

constrained through a fixed origin. 
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phosphates from the less shocked Mg-suite samples 

(76335 and 76533, ref. [12]) and it ties very well with 

the reported Ar-Ar age [8]. Thus we interpret it as the 

age when the norites cooled below the U-Pb closure 

temperature of apatite (~450 ⁰C), most likely after the 

pervasive impact at ~4.25 Ga [7] that induced the S5-S6 

deformation. The lower intercept indicates a substantial, 

and in some grains even complete, Pb-loss in apatite and 

merrillite at ~500 Ma. This disturbance of the U-Pb sys-

tem has not been recorded in any other geochronometer 

applied to these rocks [summarized in 6]. It also differs 

significantly from the measured cosmic exposure age 

(CRE, ~260 Ma [8]). The Pb-loss was most likely 

caused by a thermal event that does not appear to have 

disturbed other isotopic systems.  

Sub-µm structure of shocked apatite: Stable 

throughout TEM analysis, shocked apatites show good 

overall crystallinity, appearing finely granular with 

crystallites ranging in size from ~nm to ~µm in scale. 

Changes in grey-scale contrast in bright field (BF) TEM 

images reveal variation in orientation as a result of de-

formation within larger crystallites (~1µm), whereas a 

sharp BF contrast of ~50 to 100 nm crystallites implies 

their severe deformation induced fragmentation, which 

is reflected in the rings in diffraction patterns (Fig. 2).  

The smaller crystallites form grain boundaries meet-

ing at 120° triple junctions. This equilibrium texture is 

likely a result of thermal annealing of apatite exposed to 

post-shock heating from the surrounding melted plagio-

clase, caused by a major, primary impact. The atom 

probe lift outs were selected from the area dominated by 

smaller crystallites. The complex microstructure of the 

well-developed sub-grains with clear 120° grain bound-

aries are defined by segregation of Mg, Si and Fe impu-

rities. Following a recent study [14], we attempted to 

isolate U-Pb and Pb-Pb ages from different subdomains 

of the apatite tips. Unfortunately, 238U, expected to oc-

cur as oxidized compounds at 270 and 135 Da, and 
206Pb++ recorded at 103 Da (mass-to-charge ratio), re-

spectively, were too low to quantify above background. 

Singly charged U and Pb were not observed. However, 

we were able to measure overall Pb abundance (206Pb, 
207Pb and 208Pb) within the Mg-enriched features reveal-

ing lower Pb abundances than in the Mg-poor subgrains. 

This suggests Pb mobilization and loss along the bound-

aries between recrystallized subgrains. Although ob-

served at nm-scale, Pb-mobilization can be considered 

grain-wide because it is present in all eight tips that are 

lifted out along  a ~15 µm long profile.   

Discussion and conclusions: The lower intercept 

age of 498 ± 18 Ma could not correspond to U-Pb reset-

ting induced by a major impact event, responsible for 

the broad S5-S6 deformation of the norites, as such an 

event would have caused partial to complete resetting of 

all other geochronometers. Instead, a minor thermal 

event must have reactivated the existing nm-scale grain 

boundaries, present in the recrystallized phosphates, to 

allow for Pb-loss at 498 ± 18 Ma. If a minor impact is 

responsible for the Pb loss at ~500 Ma, then an older, 

larger impact is responsible for the high-grade (S5-S6) 

whole rock deformation and sub-grain annealing of the 

apatite. A recent hypothesis of an impact at ~4.25 Ga 

[7], very soon after the crystallization, fits well with this 

scenario. Based on our current understanding of the 

thermal evolution of the lunar interior, it is unlikely that 

the heating at ~500 Ma was caused by volcanism or a 

similar indigenous process. Interestingly, this age is 

concordant with the lower intercept of the apatite U-Pb 

systematics in Novato L6 ordinary chondrite 

(473 ± 38 Ma, [15]), interpreted to reflect a major dis-

turbance related to the catastrophic disruption of the L 

chondrite parent body [16].  
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Figure 2. APT tips revealing distribution of major and trace 

elements in apatite (78236) at sub-µm scale. TEM BF image 

indicates the crystallite size. The inset show indexed diffrac-

tion pattern of the area.   
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