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Introduction: Global anomalies in the interior of a 

planet reveal information about its evolution. For exam-
ple, the location and shape of Large Low Shear Velocity 
Provinces (LLSVPs) on Earth have been used as con-
straints for mantle evolution models [1, 2]. However, 
LLSVPs have first been detected using seismic data, 
which is not available in sufficient quantity for other 
planets [3]. Instead, gravity data must be used to search 
for equivalent features in planetary interiors [4]. How-
ever, gravity inversions are non-unique, and the epis-
temic uncertainty (uncertainty due to model assump-
tions) is rarely quantified [5]. We describe here a gravity 
inversion method that addresses these issues and pro-
vides a measure of confidence in gravity-derived inte-
rior models.  

Method. The approach advocated here is to conduct 
a Transdimensional Hierarchical Bayesian Object-Ori-
ented Gravity Inversion (THeBOOGIe). The central 
idea of this method is to use gravity data of a planetary 
body as input in a Markov chain Monte Carlo  (McMC) 
algorithm that generates many models of the interior 
density distribution, each parameterized as a collection 
of finite-size objects. Confidence in the shape or mag-
nitude of density anomalies depends on how consistent 
these objects are throughout the different models. 
 

 

Figure 1. Slice of a sphere di-
vided in tesseroids and having 
four Voronoi regions, each 
with a different density value. 

 
Model definition. The interior of the planetary body 

is partitioned into n Voronoi cells [6], each having a 
constant density anomaly. Each Voronoi cell is associ-
ated with a nucleus and comprises the geometric domain 
closer to this nucleus than any other nucleus.  

For computation of the gravity field associated with 
a given model, the sphere representing the planetary in-
terior is divided in spherical tesseroids which are limited 
by the intersections of two meridians, two parallels and 
two concentric spheres (Figure 1). The gravity signature 
of each tesseroid is computed following [7] and the 
gravity signature of a Voronoi cell is simply the sum of 
the gravity signature of all the tesseroids it contains.  

McMC algorithm. THeBOOGIe generates a se-
quence of models that differ only by a random change 

in one parameter value (number of Voronoi cells, posi-
tion of each seed, and variance of the input data) from 
the previous one. For any given model, the density of 
each cell is found by optimization. Bayes’ rule assigns 
a posterior probability to the new model based on how 
well its gravity field matches the input gravity field, ge-
ological priors, model complexity, and noise of the in-
put data [8]. Successive models are compared based on 
this probability and each new model may be retained as 
part of a Markov chain according to its associated pos-
terior probability improvement. The rules followed by 
the McMC algorithm enable convergence to the true so-
lution after a sufficiently large number of iterations [9]. 
In practice, convergence is achieved when the likeli-
hood of accepted models does not vary greatly. The in-
version yields an ensemble of solutions sampled once 
convergence is achieved. We analyze here the average 
density and its variance in each tesseroid across the so-
lution ensemble. 

 

 

Figure 1. Gravity field (top row) and difference with input 
gravity (bottom row) for the initial (left) and final (right) 
model in the McMC. 

Synthetic test: Our algorithm was tested using an 
synthetic gravity field inspired by some characteristics 
of the lunar gravity field. The synthetic field features a 
global dichotomy (far side vs. near-side), two mascons 
and a large basin (SPA). Each of these density anoma-
lies is located near the surface, as appropriate for crustal 
or near-crustal anomalies. In addition, we include a 
large mass anomaly at the base of the mantle represent-
ing a potential target of investigation. 
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The initial model is chosen randomly from a uni-
form distribution and, as expected, does not fit the input 
gravity well (Figure 2, left). In contrast, the gravity field 
of the final density model matches the input gravity very 
well (Figure 2, right), with only small differences out-
lining the SPA basin. THeBOOGIe is able to find mod-
els that fit well the gravity constraints. However, the 
challenge is to understand if the density distribution in 
these acceptable models corresponds to the density dis-
tribution used to build the input gravity field. 

Figure 3 shows a global view of the mean output 
density model (solution obtained by THeBOOGIe) and 
compares it with the true model. The geographic loca-
tion and magnitude of density anomalies are recovered, 
with only small differences near the mascons 

.  

 
 

Figure 2. Comparison of the mean output density in the inver-
sion result (output model, top) and the true model (bottom). 
The location of all features is recovered correctly with small 
differences near the mascons and the near side of the Moon. 

Examining a vertical slice through these models 
shows, however, that the depth of the density anomalies 
features is not recovered correctly (Figure 4). Instead of 
being localized near the surface, the features in the out-
put model are elongated in depth and have lower ampli-
tude than the true anomalies. When integrated with 
depth, the total mass in each anomaly is correctly recov-
ered (Figure 3). The output model does not contain the 
deep anomaly included in the true model, although there 
is a region of high density variance where the deep 
anomaly would be: THeBOOGIE tells us that the grav-
ity data is sensitive to the presence of the deep  anomaly 
but cannot uniquely constrain its shape and magnitude. 

 

 
Figure 3. Slice of mean output model. The features in the out-
put model are elongated with depth compared to the true 
model and have smaller density anomaly. 

Conclusions. We describe a new algorithm for the 
inversion of global gravity datasets, THeBOOGIe. This 
algorithm is able to recover the correct geographical lo-
cation and overall magnitude of density anomalies but 
the density anomalies are reduced in amplitude and 
smeared  with depth. However, THeBOOGIe provides 
more information regarding the confidence of each den-
sity anomaly, as we can measure the frequency with 
which each anomaly appears among density models in 
the ensemble solution. In addition, the transdimensional 
aspect of THeBOOGIe, in which the number of mass 
anomalies changes as the inversion  proceeds, allows for 
an objective search for the density model since the num-
ber of anomalies is not arbitrary fixed. It also favors 
models having the smaller number of anomalies [8].  

Results presented here could be improved upon by 
informing the prior distribution using geological infor-
mation, for example, an average crustal thickness. How-
ever, doing so would negate one goal of our method, 
that it covers epistemic uncertainty: Anomalies con-
tained in the model ensemble can appear at any depth as 
long as they are consistent with the gravity data.  

It is also  possible that a higher resolution of the tes-
sellation used in this example, purposely kept coarse to 
allow for the rapid testing of the method, would result 
in more precise shapes of the included mass anomalies. 
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