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Introduction:  Crater counting provides a relative 
timeline of the geological history of a planetary sur-
face [1]. If an absolute age can be accurately attribut-
ed to a surface, the crater counting timeline can be 
calibrated, providing specific age information for a 
variety of features. This is available for the moon due 
to the known locations of the Apollo samples [1].  

The accuracy of a determined age by crater count-
ing is dependent on the ability to discern all the cra-
ters in a given region. Over the last 50 years, the spa-
tial resolution of planetary surface datasets acquired 
by orbiting spacecraft has been improving and we can 
now see the surfaces of other planets at sub m scales. 
This level of resolution has opened up a new way to 
refine the ages of surfaces. But current crater counting 
techniques rely on individual manual counts. For 
Mars and the Moon, there are databases of manually 
counted craters [2, 3] down to a minimum size of 
1km. The ability to make full use of the available high 
definition imagery datasets, and count crater sizes to 
10s m diameters, would allow determination of the 
most recent resurfacing episode. But crater number 
scales as a power law. Those datasets are many orders 
of magnitude larger – inaccessible to manual count-
ing. To access them we need to automate the process. 

A number of studies have addressed automated 
crater detection [4]. None have achieved the ultimate 
goal of counting and measuring craters in a reliable 
and timely fashion.  Approaches include edge detec-
tion, Hough transforms, and now applying Machine 
Learning.  Although progress has been made, it is 
surprisingly difficult to teach a computer to recognize 
the subtle variation in crater morphology and sizes as 
a common landform, and count and characterize them. 
This is especially true for Martian craters because of 
the plethora of morphology types they exhibit. No 
automated crater counting study has yet progressed to 
the point where data output has been used to deliver 
geologically meaningful information 

In previous work we described our technique, us-
ing supervised machine language, [5,6] in some de-
tail. Here we discuss the evolution of the technique. 
We also show that results are indistinguishable from 
manual count datasets for craters >1km in diameter, 
and that the algorithm is able to recognize craters 
down to 10s of m across on Mars, allowing us to gen-
erate isochrons for surfaces on Mars (or any other 

cratered planetary surface using appropriate training 
sets), at ultimate resolution, routinely. 

Machine Learning: Crater counting can be con-
sidered more generally as an object detection task. As 
such, our initial work to develop a crater detection 
algorithm (CDA) [5,6] began with training a convolu-
tional neural network (CNN) using the OverFeat ar-
chitecture [7] designed for object detection. However, 
ongoing advances in machine learning have produced 
newer, faster and more accurate object detection 
methods. In this work, we improve upon our initial 
CDA model by training a CNN using the state of the 
art You Only Look Once (YOLOv3) architecture [8].  

Approach. We used 16 THEMIS Day IR mosaics 
(https://astrogeology.usgs.gov/maps/mars-themis-
controlled-mosaics-and-preliminary-smithed-kernels) 
[9-12] spanning a band of Mars between -30˚ and 30˚ 
latitude as our dataset. The mosaics were cropped into 
tiles (960x960 pixels) and the Mars Crater Database 
(MCD) [2] was used to label the tiles with human
identified crater locations. A YOLOv3 CNN model
was then trained on a dataset comprising of 2,490
tiled images for 40,000 iterations with a 0.001 learn-
ing rate that achieved average loss of 0.196. The
trained model was tested on a unseen hold-out dataset
consisting of 1,066 images and achieved 90% preci-
sion, 94% recall, 70% intersection over union (IoU)
and a mean average precision (mAP) of 90%.

The total processing time taken by our CDA 
method for processing a THEMIS mosaic (26,674 x 
17,783 pixels) and running the detections on a GPU is 
~5 minutes.  A script to visualize the CDA results was 
also developed which has a larger execution time of 
~10 minutes as it involves drawing an overlay (boxes 
around craters) on the tiled images and merging all 
the tiles back into a single mosaic image.  

Results and Discussion: Initial results of the au-
tomated CDA are extremely encouraging considering 
the median ratio of craters counted (CDA/MCD) of all 
16 mosaics is 0.95. As a case study, we have com-
pared, in detail, the Iapygia and Elysium THEMIS 
Day IR mosaics. The Mars Crater Database lists 
19,976 craters in the area of Iapygia (-30 to 0N;135 to 
180E); our CDA counted 18,980 craters. But im-
portantly, it is not just that the CDA counted roughly 
the same number of craters, but that the Crater Size 
Frequency Distribution (SFD) and the subtle structure 
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within the SFD are virtually identical. Figure 1a 
shows where these plot on a Hartmann diagram, 
demonstrating that the two datasets span the same set 
of isochrons. The entire Iapygia surface (the area of 
the whole quadrangle) is between 3.5 and 4Ga in age. 
Figure 1b shows the comparison SFDs for the Elysium 
quadrangle. Elysium has fewer craters overall and 
thus should be a younger surface compared to Iapy-
gia. The data in the SFD fall between the 1 and 3.5Gy 
isochrons, and are a good match to previously manu-
ally generated data.  

These results are encouraging, because we have 
yet to introduce new training of more complex da-
tasets to characterize and identify all the different 
types of craters (simple, complex, degraded, second-
ary, etc.).  In addition, little extra training will be 
needed before applying it higher resolution image 
datasets to allow access to craters (and dates) down to 
m-sizes. This extra training will be the focus of the
current activities, allowing us to apply the CDA to
smaller craters (sub-km) in the CTX and HiRISE da-
tasets.
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Figure 1. Crater Size Frequency Distribution compar-
ing crater counts from the MCD [2] to results of our 
Crater Detection Algorithm for the (a) Iapygia and (b) 
Elysium Quadrangles on Mars. The isochrons are re-
produced from the 2004 iteration as described by 
Hartmann[13]. 
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