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Introduction:  Carbonate minerals are germane to 

questions involving volatile and climate history on 

Mars [e.g., 1-2].  In particular, the abundance of car-

bonate-bearing minerals can provide broad useful 

bounds on the amount of CO2 out-gassed into the at-

mosphere over its history and their spatial distribution 

and mineralogy can yield constraints on the environ-

ments in which they were produced.  Earth-based, or-

bital, and landed spectral observations provide evi-

dence for the presence of carbonates in the Martian 

environment [3-6]. Infrared observations made from 

spacecraft near Mars were interpreted to indicate the 

presence of carbonates.  [6] associated the carbonates 

with the surface dust and interpreted the mineralogy as 

being consistent with magnesite (MgCO3).  Near-

infrared observations from Mars orbit have been inter-

preted to suggest magnesite outcrops in restricted loca-

tions [7-9]. 

Quantitative estimates of the abundance of car-

bonates on Mars range from 0-3% [3], 2-5% [6], less 

than a few percent [10], and <10% [8].  With the grow-

ing evidence for magnesite on Mars additional quanti-

tative estimates can be provided via theoretical model-

ing of the reflectance from the Martian surface.   

Calcite (CaCO3) and dolomite ((Ca,Mg)CO3) are 

identified in Asian dust [2-17%], [10] and calcite in 

Saharan dust [~8-10% [12-15]. The importance of op-

tical constants at visible and near-infrared wavelengths 

as proxies for estimating the effects at infrared wave-

lengths, has been investigated [15]. 

The growing evidence for Mg-carbonates on Mars, 

the presence of calcite and dolomite in terrestrial aero-

sols, and general lack of optical constants for these 

materials in the visible- to mid-infrared (VMIR, ~0.3-6 

m) has motivated the current effort to estimate the 

optical constants of calcite, dolomite, and magnesite in 

the VMIR. 

 

Methodology:  Using reflectance measurements of 

calcite, dolomite, and magnesite from a variety of on-

line spectral libraries [16-18].  For each of the car-

bonates all the libraries were searched and available 

data cataloged.  The bulk of these samples were elimi-

nated due to the availability of only a single grain size, 

the presence of spectral features associated with other 

materials, the presence of odd spectral behavior, and/or 

lack of data at wavelengths long enough to overlap 

with the infrared data. For magnesite, nine possible 

samples were identified, and only a single sample, hav-

ing two grain sizes was used.  Additionally, a continu-

um as used to eliminate spectral features due to Fe
2+

 

prior to determination of the refractive indices.  For 

dolomite, nine possible samples were identified, and 

only a single sample, having three grain sizes was 

used. For calcite, fifty six possible samples were iden-

tified, and two samples, having five grain sizes were 

used. 

A radiative transfer model for the visible and mid-

infrared wavelengths (~0.3-6 m) was used to provide 

an estimate of the imaginary index of refraction, k.  

Input parameters include: 1) reflectance spectrum, lab 

viewing geometry, sample particle size (from lab doc-

umentation), sample solid density (from literature), 

real index of refraction (n, initially a constant value 

calculated as an average from several literature values 

of the ordinary and extraordinary axes), and a conver-

gence criterion (10
-6

 was used). The general process is 

illustrated in Fig. 1. 

The resulting k values are combined with literature 

values at longer wavelengths [19] by fitting a quadratic 

to join the shorter and longer wavelength k-values in 

the 5.5-6 m region.  The combined data are used in a 

subtractive Kramers-Kronig analysis to estimate n, as 

described in [20]. This iterative process is captured in 

Fig. 2. 

 

Results:  The iterative approach illustrated in Fig. 

2 was repeated until the real and imaginary indices did 

not change significantly between successive iterations.  

 

Figure 1.  Schematic diagram of the process used to 

estimate k. 
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This nominally required three iterations between the 

Hapke and SKK applications. 

 

Figure 2.  Schematic diagram of iterative use of Hapke 

calculations and subtractive Kramers-Kronig analysis 

(SKK) to determine the wavelength dependence of n. 

 

 

Figure 3.  Magnesite refractive index as a function of 

iteration. (a) real index, n, black line is the initial esti-

mate where n=constant and other colors represent 

subsequent values for n=f(). (b) Difference |n| be-

tween successive iterations for n.  By the third iteration 

(light gray line) the differences are < ~10
-6

.  Values of 

|n| = 0 are not shown on the logarithmic scale and 

result in a gap in the curves. 

 As shown in Fig. 3, differences are typically <10
-5

 

for n between iteration 3 and 2.  The greatest differ-

ences in the n was the transition from the initial as-

sumption of a n = constant to the results of the first 

SKK analyses where n = f().  Fig. 4 shows that differ-

ences are typically <10
-6

 for k between iterations 3 and 

2.  The greatest differences observed for k were in the 

region where imaginary indices were combined with 

the longer wavelength data.  Similar results are seen 

for n and k of calcite and dolomite. 

 

Conclusions:  Final results for all three carbonates 

will be submitted publication and to the PDS. 

 

 

Figure 4.  Magnesite refractive index as a function of 

iteration. (a) imaginary index, k, black line is the ini-

tial estimate with n=constant and other colors repre-

sent subsequent values for k with n=f(). (b) Differ-

ence |k| between successive iterations for k.  In the 

third iteration (light gray line) differences are < ~10
-7

.  

Values of |k| = 0 are not shown on the logarithmic 

scale and result in gaps in the curves. 
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