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Introduction: The NASA Mars Science Laborato-

ry (MSL) Curiosity rover investigated a region in Gale 

crater known as Marias Pass about 1000 days after 

landing. Both the Murray formation, a primarily lacus-

trine mudstone [1], and the unconformably overlying 

Stimson formation, an aeolian sandstone [2] are ex-

posed here. In Marias Pass, the MSL ChemCam in-

strument observed Murray SiO2 abundances from 56–

82 wt.% and FeOT abundances from 2–18 wt.% [3]. 

Silica and FeOT are anti-correlated here, with the high-

est-silica/lowest-FeOT material observed at the “Elk” 

and “Lion” areas (Fig. 1). This high-silica material has 

fine-scale parallel laminations characteristic of mud-

stone [4]. The absence of high-silica Murray material 

above Lion suggests that it is confined to a stratigraph-

ic layer. High-silica material in the Stimson is also pre-

sent upsection in vertical “fracture halo” alteration fea-

tures [3,5,6] containing silica possibly mobilized from 

an underlying laterally extensive source [3,6]. 

The MSL CheMin instrument performed an X-ray 

diffraction experiment on the drilled “Buckskin” sam-

ple from the Lion area (Fig. 1) and found ~14 wt.% 

tridymite and ~2 wt.% cristobalite, high-temperature, 

low-pressure silica polymorphs [4,7]. This tridymite-

bearing material is interpreted to be a product of silicic 

volcanism [4,7]. The high-silica material in Marias 

Pass may be a source for silica enrichment in the frac-

ture halos upsection [3]. These lines of evidence sug-

gest that the high-silica material exposed at Lion may 

be present in the subsurface throughout Marias Pass. 

Since unaltered volcanic material would be dehydrated 

relative to aqueously altered material, a volcanically-

derived layer could have a composition (low Fe) and 

hydration (low H) which the Dynamic Albedo of Neu-

trons (DAN) instrument is sensitive to. 

Methods: The MSL DAN instrument is a neutron 

spectrometer sensitive to hydrogen [e.g., 8], neutron 

absorbing elements (e.g., Fe and Cl) [9], and their 

depth distribution within the top ~50 cm of the subsur-

face. Thus, DAN is capable of identifying low-Fe 

(high-silica) material in Marias Pass, and of quantify-

ing its hydration. We simulated multiple subsurface 

layers using Monte-Carlo N-Particle (MCNP) transport 

code and compared these results to those from DAN. 

Water-Equivalent Hydrogen (WEH), elemental geo-

chemistry, and depth were free parameters for each 

subsurface layer in our simulations. This created a 

‘grid’ of models to be compared to DAN data through-

out Marias Pass. We use the Markov-Chain Monte-

Carlo (MCMC) analysis routine from [10] to produce a 

likelihood distribution based on free parameter interpo-

lation. The elemental abundances used were measured 

by the ChemCam LIBS instrument [11–13], with Cl 

values determined by the MSL APXS instrument [14]. 

Figure 1 shows the locations of sites investigated 

for this study. DAN data from Sites 1–4 were first 

compared to a grid of one-layer models. Results from 

Site 2 indicated that surface geochemistry is not homo-

geneously distributed in the top 50 cm suggesting that 

high-silica/low-Fe material is present at depth. Follow-

up two-layer models included surface geochemistry in 

the upper layer and variable geochemistry in the lower 

layer. One-layer results from Sites 3 and 4 also sug-

gested that high-silica/low-Fe material was present at 

depth. These sites have unconsolidated material of un-

known composition at the surface, so follow-up two-

layer models included variable upper layer geochemis-

try and high-silica lower layer geochemistry. 

Figure 1: Topographic and location map showing cross 

section traces. Warm contours are topographically higher. 

Results: Sites 2–4 all contain high-silica/low-Fe 

material in the subsurface. The high-silica WEH and 

depth results for each site are shown in Figure 2. The 

average WEH of high-silica/low-Fe material is 1.56 ± 

0.26 wt.%. Analyses of Mastcam multispectral data at 

Site α (Fig. 1, 2B) are consistent with a high-silica/low-

FeOT surface composition similar to material at Elk 

and Lion. 
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Figure 2: Cross sections with surface/subsurface composition and high-silica/low-Fe WEH. 4X vertical exaggeration. (A) One 

possible layer dip (~2.3° SW) is shown, but dip is not constrained in this direction. Site 4 bedrock (dashed, located ~2 m south of 

A-A’) is projected from its measured elevation. (B) Sites 2 and 4 constrain the maximum dip and minimum thickness of the layer.

A single sub-horizontal layer can project through 

all high-silica/low-Fe material in Marias Pass. Our 

depth results constrain the thickness and orientation 

of this layer. Relationships shown in Fig. 2B require a 

thickness of at least ~58 cm. The dip from Lion to the 

top of the high-silica/low-Fe material at Site 2 is 

~0.6° SW (Fig. 2B). Lion and Sites 1, 3, and 4 are 

approximately colinear (Fig. 1, 2A). Since the high-

silica/low-Fe layer contacts are not observed at these 

sites, the E-W dip is unknown. Note that a shallower 

E-W dip requires a greater high-silica layer thickness. 

The Murray has a regional dip of ~3° NW [15,16] 

and the orientation of the high-silica/low-Fe layer in 

Marias Pass is consistent with a minor local variation 

of this dip. 

Figure 2A shows that the high-silica layer projects 

into the subsurface at Site 1. The absence of high-

silica material in the DAN FOV suggests that such 

high-silica material has been removed by erosion and 

that the top ~50 cm of Site 1 is composed of material 

transported from another location. This is supported 

by rover imagery that shows a heterogeneous mixture 

of bedrock fragments and sand at Site 1. 

Discussion: ChemCam measured 4.0 ± 1.3 wt.% 

WEH at Buckskin [17], significantly higher than our 

average DAN result of 1.56 ± 0.26 wt.% WEH. DAN 

measures the average hydration within its FOV (~3 m 

surface footprint, ~50 cm depth), which indicates that 

the Buckskin location sampled by ChemCam has a 

higher hydrogen value than the average of the bulk 

high-silica material in Marias Pass. 

The Buckskin drill sample contains ~60 wt.% 

amorphous material. The broad amorphous hump in 

the CheMin x-ray diffraction pattern can be fit by 

either silica glass, opal, or a mixture of these [4]. 

Since silica glass holds less water than opaline silica 

[17], the relatively low WEH in our bulk measure-

ments could be due to more abundant silica glass than 

that observed in Stimson fracture halos, where DAN 

has measured 5.1 ± 1.0 wt.% WEH and ChemCam 

has measured 3.2 ± 1.0 to 4.0 ± 1.2 wt.% WEH [17].  

Conclusions: A stratigraphic layer of silicic vol-

canic material deposited in a lacustrine environment 

that preserves significant volcanic glass should be 

laterally extensive, conformable, and have a low wa-

ter content. Our results show that subsurface high-

silica/low-Fe material in Marias Pass has these char-

acteristics. If this material was a source for Stimson 

fracture halo silica, then it must extend from Marias 

Pass to the most distant Stimson fracture halo (~900 

m SW of Marias Pass). The Murray was deposited 

~3.8-3.6 Ga [18], and the identification of a silicic 

volcanic layer in the Murray indicates that an evolved 

magma source existed on Mars at or before this time. 
References: [1] Grotzinger, J.P. et al. (2015) Science, 

350(6257). [2] Banham, S.G. et al. (2018) Sedimentology, 65, 

993-1042. [3] Frydenvang, J. et al. (2017) GRL, 44, 4716-

4724. [4] Morris, R.V. et al. (2016) PNAS, 133(26), 7071-

7076.  [5] Gasda, P.J. et al. (2016) LPSC, 1675. [6] Yen, A.S. 

et al. (2017) EPSL, 471, 186-198. [7] Rampe, E.B., et al. 

(2017) EPSL, 471, 172-185. [8] Mitrofanov, I.G. et al. (2012) 

Space Sci. Rev., 170, 559-582. [9] Hardgrove, C. et al. (2011) 

NIMA, 659, 442-455. [10] Gabriel, T.S.J. et al. (2018) GRL, 

45. [11] Wiens, R.C. et al. (2012) SSR, 170(1–4), 167–227. 

[12] Maurice, S. et al. (2012) SSR, 170(1–4), 95–166. [13] 

Clegg, S.M. et al. (2017) Spectrochim. B: A. Spec., 129, 64–

85. [14] Campbell, J. L. et al. (2014), NIMB, 323, 49–58. [15] 

Kite, et al. (2013) Geology, 41(5), 543-546. [16] Lewis, K.W., 

and Turner, M.L. (2019) LPSC. [17] Rapin, W. et al. (2018) 

JGR: Planets, 123. [18] Thomson, B. J. et al. (2011), Icarus, 

214, 413-432. 

2060.pdf50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132)


