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Introduction: The NASA Mars Science Laborato-
ry (MSL) Curiosity rover investigated a region in Gale
crater known as Marias Pass about 1000 days after
landing. Both the Murray formation, a primarily lacus-
trine mudstone [1], and the unconformably overlying
Stimson formation, an aeolian sandstone [2] are ex-
posed here. In Marias Pass, the MSL ChemCam in-
strument observed Murray SiO, abundances from 56—
82 wt.% and FeOr abundances from 2-18 wt.% [3].
Silica and FeOr are anti-correlated here, with the high-
est-silica/lowest-FeOr material observed at the “Elk”
and “Lion” areas (Fig. 1). This high-silica material has
fine-scale parallel laminations characteristic of mud-
stone [4]. The absence of high-silica Murray material
above Lion suggests that it is confined to a stratigraph-
ic layer. High-silica material in the Stimson is also pre-
sent upsection in vertical “fracture halo” alteration fea-
tures [3,5,6] containing silica possibly mobilized from
an underlying laterally extensive source [3,6].

The MSL CheMin instrument performed an X-ray
diffraction experiment on the drilled “Buckskin” sam-
ple from the Lion area (Fig. 1) and found ~14 wt.%
tridymite and ~2 wt.% cristobalite, high-temperature,
low-pressure silica polymorphs [4,7]. This tridymite-
bearing material is interpreted to be a product of silicic
volcanism [4,7]. The high-silica material in Marias
Pass may be a source for silica enrichment in the frac-
ture halos upsection [3]. These lines of evidence sug-
gest that the high-silica material exposed at Lion may
be present in the subsurface throughout Marias Pass.
Since unaltered volcanic material would be dehydrated
relative to aqueously altered material, a volcanically-
derived layer could have a composition (low Fe) and
hydration (low H) which the Dynamic Albedo of Neu-
trons (DAN) instrument is sensitive to.

Methods: The MSL DAN instrument is a neutron
spectrometer sensitive to hydrogen [e.g., 8], neutron
absorbing elements (e.g., Fe and Cl) [9], and their
depth distribution within the top ~50 cm of the subsur-
face. Thus, DAN is capable of identifying low-Fe
(high-silica) material in Marias Pass, and of quantify-
ing its hydration. We simulated multiple subsurface
layers using Monte-Carlo N-Particle (MCNP) transport
code and compared these results to those from DAN.
Water-Equivalent Hydrogen (WEH), elemental geo-
chemistry, and depth were free parameters for each
subsurface layer in our simulations. This created a
‘grid’ of models to be compared to DAN data through-

out Marias Pass. We use the Markov-Chain Monte-
Carlo (MCMC) analysis routine from [10] to produce a
likelihood distribution based on free parameter interpo-
lation. The elemental abundances used were measured
by the ChemCam LIBS instrument [11-13], with CI
values determined by the MSL APXS instrument [14].

Figure 1 shows the locations of sites investigated
for this study. DAN data from Sites 1-4 were first
compared to a grid of one-layer models. Results from
Site 2 indicated that surface geochemistry is not homo-
geneously distributed in the top 50 cm suggesting that
high-silica/low-Fe material is present at depth. Follow-
up two-layer models included surface geochemistry in
the upper layer and variable geochemistry in the lower
layer. One-layer results from Sites 3 and 4 also sug-
gested that high-silica/low-Fe material was present at
depth. These sites have unconsolidated material of un-
known composition at the surface, so follow-up two-
layer models included variable upper layer geochemis-
try and high-silica lower layer geochemistry.
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Figure 1: Topographic and location map showing cross
section traces. Warm contours are topographically higher.

Results: Sites 2—4 all contain high-silica/low-Fe
material in the subsurface. The high-silica WEH and
depth results for each site are shown in Figure 2. The
average WEH of high-silica/low-Fe material is 1.56 +
0.26 wt.%. Analyses of Mastcam multispectral data at
Site a (Fig. 1, 2B) are consistent with a high-silica/low-
FeO surface composition similar to material at Elk
and Lion.
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Figure 2: Cross sections with surface/subsurface composition and high-silica/low-Fe WEH. 4X vertical exaggeration. (A) One

possible layer dip (~2.3° SW) is shown, but dip is not constrained in this direction. Site 4 bedrock (dashed, located ~2 m south of
A-A4’) is projected from its measured elevation. (B) Sites 2 and 4 constrain the maximum dip and minimum thickness of the layer.

A single sub-horizontal layer can project through either silica glass, opal, or a mixture of these [4].
all high-silica/low-Fe material in Marias Pass. Our Since silica glass holds less water than opaline silica
depth results constrain the thickness and orientation [17], the relatively low WEH in our bulk measure-
of this layer. Relationships shown in Fig. 2B require a ments could be due to more abundant silica glass than
thickness of at least ~58 cm. The dip from Lion to the that observed in Stimson fracture halos, where DAN
top of the high-silica/low-Fe material at Site 2 is has measured 5.1 + 1.0 wt.% WEH and ChemCam
~0.6° SW (Fig. 2B). Lion and Sites 1, 3, and 4 are has measured 3.2 + 1.0 to 4.0 + 1.2 wt.% WEH [17].
approximately colinear (Fig. 1, 2A). Since the high- Conclusions: A stratigraphic layer of silicic vol-
silica/low-Fe layer contacts are not observed at these canic material deposited in a lacustrine environment
sites, the E-W dip is unknown. Note that a shallower that preserves significant volcanic glass should be
E-W dip requires a greater high-silica layer thickness. laterally extensive, conformable, and have a low wa-
The Murray has a regional dip of ~3° NW [15,16] ter content. Our results show that subsurface high-
and the orientation of the high-silica/low-Fe layer in silica/low-Fe material in Marias Pass has these char-
Marias Pass is consistent with a minor local variation acteristics. If this material was a source for Stimson
of this dip. fracture halo silica, then it must extend from Marias

Figure 2A shows that the high-silica layer projects Pass to the most distant Stimson fracture halo (~900
into the subsurface at Site 1. The absence of high- m SW of Marias Pass). The Murray was deposited
silica material in the DAN FOV suggests that such ~3.8-3.6 Ga [18], and the identification of a silicic
high-silica material has been removed by erosion and volcanic layer in the Murray indicates that an evolved
that the top ~50 cm of Site 1 is composed of material magma source existed on Mars at or before this time.
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