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Introduction: Comets are thought to have formed 

at the cold, outer parts of the solar system, providing a 
different perspective on conditions of early solar sys-
tem evolution, relative to meteorites. Comet 81P/Wild 
2 samples returned by the NASA Stardust mission 
contain 16O-rich, FeO-poor, Mn-enriched (LIME) 
olivine particles that are considered to be condensates 
from solar nebula gas [1-5]. LIME olivine is also 
found in amoeboid olivine aggregates (AOAs) in 
chondrites [e.g., 6, 7]. AOAs in the least metamor-
phosed meteorites are 16O-rich [e.g., 8, 9], which sug-
gests a genetic relationship between Wild 2 LIME 
olivine grains and AOAs. Some AOAs and Ca, Al-
rich inclusions (CAIs) have negative δ25Mg values 
[e.g., 10-12] relative to the Earth and bulk chondrites 
(δ25MgDSM3 = –0.13 [13]). The light isotope enrich-
ments in these refractory inclusions may be the result 
of condensation from solar nebula gas due to kinetic 
isotope fractionation [14].  

If 16O-rich Wild 2 olivines are condensates from 
solar nebula gas, they may have negative δ25Mg val-
ues. Here we report for the first time Mg isotope rati-
os of Wild 2 olivine particles with known oxygen 
isotope ratios from previous studies [2-3, 15]. We also 
measured oxygen and magnesium isotope ratios in 
AOAs from the Kaba (CV3.1) and DOM 08006 
(CO3.01) chondrites in order to compare with the 
newly obtained Wild 2 dataset. 

Samples and analytical procedures: Seven Wild 
2 olivine particles were analyzed from four different 
tracks (T57, T77, T149, and T175). Mg#’s of the oli-
vine particles range from 60 to 99.8 [1-3, 15]. Previ-
ous studies revealed that four out of seven particles 
are 16O-rich (T57/F10, T77/F6, T175/F1, and 
T77/F50; δ18O: –56 to –46‰; Δ17O: –24 to –22‰) 
and the other three particles are 16O-poor (T77/F4, 
T149/F1, and T149/F11a; δ18O: 2.5 to 6.8‰; Δ17O: –
1.7 to –1.0‰) [2-3, 15]. We studied one Kaba AOA 
that is a dense object with little porosity (referred to 
as “compact” by [16]) and eight DOM 08006 AOAs 
with compact and/or more porous textures.  

Magnesium three-isotope analyses were performed 
using the WiscSIMS Cameca IMS 1280 equipped 
with a radio-frequency (RF) plasma ion source. We 
used O2– primary ions instead of O– to achieve higher 

secondary ion yield and better ionization efficiency 
[17]. A 2 µm diameter (25 pA) primary ion beam was 
used for Wild 2 olivine analyses. A 5 µm or 9 µm 
diameter (160 pA or 2 nA) primary beam was used for 
AOA olivine analyses. Secondary Mg ions (24Mg+, 
25Mg+, 26Mg+) were detected on multicollection Fara-
day Cups (FCs) using three 1012 ohm resistors (25 pA 
and 160 pA) or one 1010 ohm and two 1011 ohm resis-
tors for 24Mg+, and 25, 26Mg+, respectively (2 nA). The 
typical external reproducibility (2 standard deviation: 
2SD) of δ25Mg for the San Carlos olivine (SC-Ol) 
standards was 0.25‰, 0.13‰, and 0.08‰ for primary 
ion beams of 25 pA, 160 pA, and 2 nA, respectively.  

We prepared 13 olivine standards with a range of 
Mg# (100-60) for SIMS instrumental bias corrections. 
Mg isotope ratios in DSM-3 scale of three standards 
were previously obtained using solution MC-ICPMS 
[18]. Including these three, all 13 olivine standards 
were measured using a Nu Plasma II MC-ICPMS at 
UW-Madison with a Nd:YLF-pumped Ti:sapphire 
femtosecond laser. These fs-LA analyses revealed 
samples were internally homogeneous in δ25Mg. We 
observed a complex SIMS instrumental bias for δ25Mg 
in olivine as a function of Mg# (100-60). The bias 
changed smoothly for Mg# 100-89 and 86-60 by 
1.6‰ and 0.7‰, respectively, while it jumps by 1.5‰ 
between Mg# 86 and 89. Excluding this narrow range 
of olivine compositions (86-89), the uncertainties of 
bias corrections were similar to, or smaller than, the 
external reproducibility of SC-Ol standards in each 
SIMS session. 

Oxygen three-isotope analyses of AOAs were per-
formed using the IMS 1280 with three FCs [19]. A 8 
µm diameter (0.7 nA) Cs+ primary ion beam was used 
for analyses. Synthetic pure forsterite was used as a 
standard and bracketed the unknown AOA analyses. 
The external reproducibility (2SD) of the running 
standard during the session was 0.4‰, 0.8‰, and 
0.8‰ for δ18O, δ17O, and Δ17O, respectively. 

Results: In an oxygen three-isotope diagram, the 
Kaba and DOM 08006 AOAs form a tight cluster on 
the primitive chondrule mineral (PCM) line [9]. All 
AOAs measured in this study yield averaged δ18O and 
Δ17O values of –45.8 ± 0.7‰ (2SD) and –24.0 ± 
0.4‰ (2SD), respectively. 
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The δ25Mg values of Wild 2 olivines and AOAs 
from the Kaba and DOM 08006 chondrites are shown 
in Fig. 1. Wild 2 olivine particles show small varia-
tions in δ25Mg ranging from –0.7±0.3‰ (2σ: T175/ 
F1) to 0.4±0.4‰ (2σ: T149/F1). As T149/F1 and 
T149/F11a have Mg#’s around 86, we cannot exclude 
the possibility that their δ25Mg values are slightly 
inaccurate, due to the larger instrumental bias uncer-
tainty for the specific range of olivine compositions 
(Mg# 86-89). The mass independent fractionation 
Δ26Mg values of all Wild 2 olivines, which are cali-
brated using the exponential law [20], are normal 
within analytical uncertainties (≤0.8‰: 2σ). Varia-
tions in δ25Mg are larger for AOAs (–2.6 to 1.2 ‰), 
than those of Wild 2 olivines, especially among 
AOAs with porous textures. Note that the DOM 
08006 AOA 501 contains areas with both compact 
and porous textures, which show positive and nega-
tive δ25Mg values, respectively. 

 

 
Fig. 1. δ25Mg values of the Wild 2 olivine particles 
and meteoritic AOAs analyzed in this work. Square 
and diamond symbols represent compact and porous 
AOAs, respectively. 
 

Discussion: All Wild 2 olivine particles have 
near-chondritic Mg isotope ratios, indicating there is 
no significant Mg isotope heterogeneity between Wild 
2 olivine forming regions (16O-rich and 16O-poor) and 
meteorites and Earth forming regions [13]. 

AOAs show significant variations in δ25Mg, de-
spite their narrow ranges of 16O-rich oxygen isotope 
ratios. T175/F1 and some porous AOAs have negative 
δ25Mg, with values similar to those previously report-
ed in other AOAs and CAIs [10-12]. This signature is 
indicative of condensation from nebula gas [14]. In 
contrast, 16O-rich Wild 2 olivine particles, except 
T175/F1, do not show clear negative δ25Mg values. 
The nearly chondritic Mg isotope ratios of 16O-rich 
Wild 2 olivines could imply that: (1) Wild 2 olivines 
formed by nearly equilibrium condensation from neb-

ular gas; (2) after condensation from nebular gas, 
Wild 2 olivines experienced isotopic exchange with a 
chondritic component having a planetary Mg isotopic 
composition, and/or (3) Wild 2 olivines experienced 
parent body alteration. Previous studies revealed that 
three of the 16O-rich Wild 2 olivines (T57/F10, 
T77/F6, and T77/F50) have Mn-rich chemical compo-
sitions, indicating these olivines formed by condensa-
tion from nebula gas [1-6], which would support the 
first scenario. Note that some AOAs studied here, 
especially AOAs with a compact texture, show nearly 
chondritic or slightly heavier δ25Mg values (Fig. 1). 
This textural and isotopic relationship suggests that 
compact AOAs experienced reheating processes in 
nebula gas. If some Wild 2 olivines experienced simi-
lar reheating processes, the second scenario may ap-
ply. Self-diffusion coefficients measured for Mg in 
forsterite compared to those for oxygen [see 21 and 
references therein], imply that the third scenario can-
not be excluded at this time. 

Summary: The absence of large negative δ25Mg 
values in Wild 2 16O-rich particles suggests either 
formation involved equilibrium condensation with 
nebula gas, or that they experienced reprocessing in 
nebular and/or planetary settings. Large negative 
δ25Mg values in porous AOAs indicates a condensa-
tion origin involving kinetic mass fractionation. 
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