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Introduction:  Four landers (Viking 1,2, Phoenix 

and Insight) and 4 rovers (Sojourner, Spirit, Opportuni-

ty, and Curiosity) have successfully operated on the 

Martian surface since 1976, with the combined opera-

tion time of landers exceeding 3680 sols and that of 

rovers exceeding 9660 sols at the time of writing of 

this abstract (December 2018)[1].  This has returned a 

large dataset of images from the cameras on board, 

with examples of recent image-based research on Curi-

osity images alone including, but not limited to, studies 

of aeolian, active bedforms [2,3], conglomerates and 

river beds [4], sedimentary structures [5,6,7], and ero-

sional features [8], together for a reconstruction of the 

geology of the site [9,10,11]. This list is clearly not 

exhaustive but it demonstrates how images are key to 

understanding of the geologic environment at the site, 

and thus are basis for operational decisions and an in-

valuable science data resource. With two missions cur-

rently active (Curiosity, InSight) and two more sched-

uled to launch in 2020 (ESA ExoMars, NASA 

Mars2020) this data set is a ‘big data’ problem, and 

growing. In order to facilitate easier access, especially 

for researchers who do not have the luxury of follow-

ing the mission on a daily basis, this research has de-

veloped an automated terrain labelling and classifica-

tion system based on state of the art machine/deep 

learning which enables keyword based search.  

The project:  LabelMars achieved 5000 annotated 

images from the Spirit, Opportunity and Rover naviga-

tion camera data bases. The project was a part of a 

larger European Space Agency (ESA) project called 

Novelty or Anomaly Hunter (NOAH) which has a 

number of other tasks, including the labelling as a citi-

zen science project [12], an AI algorithmic evaluation, 

and a prototype flight detector developed which ported 

some of the algorithms to flight C versions in order to 

enable future on-board operations of the technology. 

We started with the entire set of available navigation 

camera images from the MER and MSL rovers sourced 

from the Analyst’s Notebook [13] and down-selected 

those by selecting continuous rows of sols from differ-

ent terrains and subsequently deleting all unsuitable 

ones from this set of images (e.g., if they were too dark 

or an exact repeat of another one). This resulted in 

5917 images {Spirit (2724), Opportunity (1173) and 

Curiosity (2020)}, which were further reduced to ex-

actly 5000 by eliminating similar scenes and very dark 

images. The resulting images were manually labelled.  

Table 1. Example of the category structure for the 

labelling. 

Category 
Sub-

Category 
Classifier 1 

Artificial 

Foreign object 

debris 
  

Shadows from 

hardware 
  

Spacecraft parts   

Tracks   

Float Rock 

 Alteration 
Concretions/Nodules 

Crystals 

Magmatic 
Dark toned 

Light toned 

Meteorite   

Sedimentary 
 Dark toned 

Light toned 

Outcrop 

 Alteration 

 Bleaching 

Concretions/Nodules 

Veins 

Impact Related 
 Craters and Ejecta 

Rock Outcrops 

Magmatic 
 Dark toned 

Light toned 

Sedimentary 
 Dark toned 

Light toned 

Unconsolidated 

 Drifts   

Dunes   

Gravel Beds 
 Homogeneous 

Structured 

Sky     

Don’t know     

We started by recruiting ‘citizen scientists’ targeting 

undergraduate students on geology modules and in the 

first 4 months had 185 labellers from this audience as 

well as “general users” with unknown to us background 

from internet advertisements. We found, consistent 

with scientific findings on larger citizen science pro-

jects (e.g., [14]), that only a small number of those 

volunteers engaged persistently, and 507 validated im-

ages were labelled, cross checked and added to the 

database. To finish the project on time, we changed the 

strategy and contracted 4725 images to 20 undergradu-
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ate students from University of Leicester. They had 4 

weeks to complete their set of images. The students 

received a tutorial and labelled a test set of images. 

Each student’s initial set of labelled images was 

checked and feedback was given as necessary. They 

proceeded to label all the images in their portfolio, 

with a subset of them being cross checked for con-

sistency between labelers. Discussions and notices on a 

dedicated and monitored forum further enhanced the 

quality of the work. Categories:  The categories were 

mainly based on the main morphological features. Ta-

ble 1 lists the category outcrops with all its sub-

categories. The other three main categories were float 

rocks (sub-categories sedimentary, magmatic, altera-

tion and meteorite), unconsolidated material (sub-

categories dunes, drifts and gravel beds), and artificial 

(sub-categories foreign object debris, spacecraft parts, 

shadows from hardware and tracks). Subcategories 

were divided further as needed, see Table 1.  

AI Based Terrain Classification:  NOAH was 

conceived to investigate the suitability of state of the 

art machine learning techniques for classification of in-

situ Mars Rover images. It follows on a from a series 

of work in the area of science autonomy [15,16]. A 

precursor project [17], used what at the time was the 

best in class classification techniques but the field of 

machine learning has accelerated dramatically in recent 

years. In particular Deep Learning has set the bench-

mark for image classification, object detection and 

semantic segmentation. In 2015 such techniques were 

shown to outperform human labelers in benchmark 

tests [18].  

NOAH therefore sought to update MASTER by in-

vestigating appropriate Deep Learning techniques in 

addition to those already in use. A key feature of these 

approaches is that they rely heavily on large volumes 

of datasets to learn how to approximate a mapping be-

tween image pixels and class probabilities. To address 

this challenge NOAH included LabelMars which 

sought to create a labelled dataset of exiting Mars Rov-

er images. To enable this a dedicated web-based tool 

called the Data Annotation Labelling Tool (DAT) was 

developed. The DAT was successfully used to facilitate 

detailed labelling of rover images. Examples are out-

lined in Figure 2 and 2.  

The dataset gathered during the two stage labelling 

activity has been used to train and evaluate a range of 

algorithms. In particular we used the FASTER R-CNN 

[19] architecture to realise sub-elements of the 

MASTER pipeline approach including saliency detec-

tion and region of interest classification. This work is 

now being completed and results will be reported 

shortly. 

 

 
Figure 1: Example of the DAT being used to label 

NavCam images using the ontology outlined in Tab. 1. 
 

 
Figure 2: Example shows labelling of float rocks, 

sky, rover tracks, ground and rover parts.  
 

Conclusions: The LabelMars activity has success-

fully created a large dataset which has been used to 

train and evaluate deep learning algorithms for auto-

matic terrain classification of Mars rover images. The 

computer vision and machine learning field is develop-

ing rapidly and this dataset and the NOAH evaluation 

framework will allow new algorithms to be evaluated 

and deployed as they emerge ensuring that scientists 

have ready access to important  mission science data. 

References: [1] NASA mission websites of the named 

missions at www.nasa.gov. [2] Baker, M. M. et al. (2018) 

GRL, 45, 8853–8863, [3] Weitz, C. M. et al. (2018) GRL, 

45, 9471-9479. [4] Williams, R. M. E.  et al. (2013) Science, 

340, 1068–1072. [5] Stack, K. M. et al. (2018) Sedimentolo-

gy, doi: 10.1111/sed.12558. [6] Williams, R: M. E. et al. 

(2018) Icarus, 309, 84–104. [7] Banham et al. (2018) Sedi-

mentology, 65, 993-1042. [8] Bridges, N. T. et al. (2014) 

JGR Planets, 119, 1374-1389. [9] Grotzinger, J. P. et al. 

(2014) Science, DOI: 10.1126/science.1242777. [10] 

Grotzinger, J. P. et al. (2015) Science, DOI: 

10.1126/science.aac7575. [11] Kah et al. (2015) Elements, 11, 

27-32. [12] Wallace et al. (2017) LPSC, abstr. #1170. [13] 

https://an.rsl.wustl.edu/. [14] Ponciano, L., and Basiliero, F., 

(2014) Human Computation (2014) 1, 245-264. [15] Woods, 

M. et al. (2009) JFR, doi: 10.1002/rob.20289. [16] Paar, G. 

et al. (2012), ICRA XXIX, 83010A-83010A-14, [17] Wal-

lace, I. et al (2015), ASTRA 2015, [18] Russakovsky, O. et 

al. (2015), IJCV, 2015, [19] Shaoqing, R. et al. (2015), 

NIPS’ 15, 1, pp 91-99. 

Acknowledgements:  The NOAH Project is car-

ried out under a R&D program of and funded by the 

European Space Agency. 

1970.pdf50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132)

http://www.nasa.gov/
https://an.rsl.wustl.edu/

