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Introduction: The CheMin instrument on MSL
has measured 20-50 wt% amorphous component in
soils and 15-45 wt% amorphous component in rocks in
Gale crater [1-5]. This amorphous component is en-
riched in both iron and sulfur and contains water
[1,3,6,7], suggesting amorphous iron sulfate as a possi-
ble component of the amorphous fraction [3,7].

Previous lab studies have shown that amorphous
sulfates can form via rapid dehydration of aqueous
solutions [8-12]. Amorphous ferric sulfates are sensi-
tive to changes in temperature and relative humidity
(RH) and will hydrate and dehydrate in response [10].
Additionally, the rate of dehydration controls the hy-
dration state of the amorphous solid [10-12].

In crystalline ferric sulfates of varying hydration
state, the amount of hydration dictates the enthalpy of
formation and entropy of the phases [13], which in turn
relate to the stability of the structure upon changes in
temperature and pressure. Crystalline ferric sulfates
also have different atomic structures depending on hy-
dration state. The atomic structure of a crystalline or
amorphous phase can be assessed via X-ray Pair Dis-
tribution Function (PDF) analysis.Though the atomic
structure of a limited set of amorphous ferric sulfates
has been previously reported [11], the effect of varying
hydration state on the atomic structure of amorphous
ferric sulfates is unknown.

This study seeks to explore the variations in short-
range structure of amorphous
ferric sulfates as a function of

hydration state. This infor-
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mation could provide insight
into the expected changes in 1
hydration and crystallinity that
these phases might undergo on 05
the Martian surface and subsur- 5
face but also during sample 0 A
caching and return. 0

Materials and Methods:
Anhydrous Fez(SO4)3 (99.998%
purity) was deliquesced in a 0 1
99% RH environment buffered
by deionized water to form a
solution with a concentration of
32.3wt% Fez(SOa4)s.
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Table 1. Dehydration pathways from ferric sulfate
solution and compositions of amorphous samples

produced.

Dehydration Pathway Final Hydration State

Vacuum — Deliquescence | Fex(SO4)3*4.01 H,O

— Vacuum (Cycled)

Vacuum Fez(SO4)3*4.68 H,O

Low RH — Vacuum Fe2(SO4)3*5.18 H,0

Vacuum — Low RH Fe2(SO4)3*6.13 H0

Low RH at 60°C Fe2(S04)3*7.56 H.O

Low RH Fex(S04)3*8.33 H.0
Low RH — Deliquescence | Fez(S04)3*8.46 H,0O
— Low RH (Cycled)
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dration methods to produce a suite of amorphous ferric
sulfates with varying hydration states (Table 1). These
methods include vacuum-induced boiling, dehydration
at 11% RH, and heating to 60°C. Additionally, two
samples were dehydrated, deliquesced, and dehydrated
again. Samples were weighed after each step to meas-
ure changes in water content.

Amorphous samples were examined using total X-
ray scattering at beamline 28-ID-1 at National Syn-
chrotron Light Source — Il, Brookhaven National La-
boratory. This data was input into the software
XPDFsuite to generate a Pair Distribution Function
(PDF) for each sample.
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This solution was divided

into seven aliquots and dehy-
drated using a variety of dehy-

Figure 1. PDF comparison of this work’s amorphous ferric sulfate samples.
Each sample is labeled by hydration state that can be referred to in Table 1.
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Figures 2a-2d. Scatter plots showing each amorphous ferric sulfate sample as a point. These plots show peak
position (2a and 2c) and full-width-half-maximum (FWHM) (2b and 2d) vs amount of stoichiometric waters
(hydration). 2a and 2b show this information for the FeOg O-O peak. 2c and 2d show this information for the Fe-
S peak. Linear fits are shown for all plots with R? values.
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Results: The PDFs of each sample are shown in
Figure 1. Peaks representing short-range (<4.5 A) in-
teratomic distances can be fit by comparing the dis-
tances in these amorphous samples to those in mika-
saite, a crystalline ferric sulfate [14].

Differences in PDF peaks among amorphous sam-
ples with different hydration can be seen in two peaks:
the peaks corresponding to the O-O distances in FeOg
octahedra (~2.75 A) and the Fe-S distance with a cor-
ner-shared O (~3.3 A) (Figure 1).

The peak positions correspond to the average
distance between atoms, and the peak broadness
(represented as full-width-half-maximum, FWHM)
corresponds to the range of distances between atoms.
For the FeOs O-O distance, the average distance
decreases with increasing hydration (Figure 2a) and
the range of distances increases (Figure 2b). For the
Fe-S distance, the average distance decreases with
increasing hydration (Figure 2c) and the range of
distances decreases (Figure 2d).

Discussion: The structural trends identified in this
work provide information on the effects of hydration
and dehydration of a potential component of Martian
soils. These trends could prove important in under-
standing how soil samples could change during sample
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caching and return, in response to temperature changes
in a sealed environment. The data provided in this
work may also assist in back-modeling the hydration
state and crystallinity of what phases were initially pre-
sent during sample caching from a study of what mate-
rials are present upon return.
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