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Introduction:  Chondrites are primitive meteorites 

containing silicate spherules, known as chondrules, em-
bedded in a fine-grained matrix. Chondrules have a nar-
row size distribution with radii on the order of 0.1 to 1 
mm [1, 2]. Chondrules were transiently molten droplets, 
and their characteristic size is a strong constraint on 
models of chondrule and chondrite formation. 

At this meeting, Stewart et al. [3] propose that va-
porizing collisions between planetesimals in the pres-
ence of the solar nebula instigate the formation of chon-
drules and chondrites. During decompression from the 
impact shock, vaporizing material expands in volume 
by many orders of magnitude and drives a bow shock 
into the nebula. Driven by the momentum of the out-
ward flow, the plume expands to lower pressures than 
the surrounding nebula. The low-pressure plume is an 
unstable feature, and secondary waves develop to re-
verse the flow direction and hydrodynamically collapse 
the plume [4]. Condensed material, derived from both 
the planetesimals and free-floating nebular debris, is 
concentrated by coupling to the converging flow during 
plume collapse, which forms a cloud of warm gas laden 
with condensates. The potential to form new planetesi-
mals from the concentrated material is discussed in [5]. 

In a vaporizing event, a portion of the colliding bod-
ies is melted. In addition, some regions of the bow shock 
are hot enough to melt nebular dust. Here, we investi-
gate the size distribution of melt fragments in the vapor 
plume. We show that shearing flows during expansion 
and collapse break up droplets and impose a maximum 
size (0.1-1 mm) determined primarily by the density of 
the nebula. We also propose that, due to the longer cou-
pling timescales for large particles, any particles larger 
than ~1 cm are not concentrated during collapse, ex-
plaining the absence of larger fragments in chondrites. 

The critical size of chondrules in a shearing flow 
[e.g., 6-8] and coupling to the nebula [e.g., 9] have been 
considered previously in the context of other chondrule 
formation mechanisms. We build on this work and ap-
ply these concepts to the collapsing vapor plume model. 

Methods: The maximum stable size of droplets in a 
shearing flow can be approximated by equating the 
force required to overcome the surface tension of a 
droplet with the drag force exerted by the vapor, 
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where 𝐶* is the drag coefficient, 𝑟,$- is the maximum 
stable droplet radius, 𝜌/$0 is the vapor density, Δ𝑣 is the 
differential velocity between the droplet and vapor, and 

𝛾 is the droplet surface tension. We calculate the maxi-
mum droplet size of silicates with a surface tension 
given by [10] in an ideal 0.818 H2 to He mixture at 2000 
K. The results are very similar for water vapor. The form 
of the drag coefficient depends on the size of the droplet 
relative to the mean-free path of molecules in the gas, 
𝐿<=>. When 𝑟	 ≫ 𝐿<=>, the drag is controlled by the 
dynamic viscosity of the vapor. We refer to this regime 
as the viscous regime and use the prescription 
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where 𝑅𝑒 = 2𝑟𝜌/$0∆𝑣/𝜇 is the Reynolds number, 𝜇 is 
the dynamic viscosity of the vapor, 𝑀𝑎 = 	∆𝑣/𝑐A is the 
Mach number, 𝑐A is the sound speed in the vapor, and 𝑤 
is 0.4 if 𝑅𝑒 < 2×10X and 0.2 if 𝑅𝑒 ≥ 2×10X [11]. The 
vapor viscosity as a function of temperature was calcu-
lated using a power-law fit to literature data [12-14]. 
When 𝑟	 ≪ 𝐿<=>, droplets do not significantly perturb 
the velocity distribution of gas molecules. Momentum 
transfer is mediated by collisions between gas mole-
cules and the droplet, and an Epstein drag prescription 
is used, 
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and 𝑇B^_" and 𝑇/$0 are the temperatures of the conden-
sate and vapor respectively (𝑇/$0 = 𝑇B^_"), 𝑚$ is the 
mean molecular mass of the vapor, and 𝑘i is Boltz-
mann's constant [15]. The authors are not aware of a sat-
isfactory treatment of the transition between the viscous 
and Epstein regime, i.e., for when 𝑟~𝐿<=>. Here, we 
consider the transition between the viscous and Epstein 
regimes to occur instantaneously when 𝑟 = 4𝐿<=>/9. 

We calculated the stopping time, or equivalently 
coupling time, of droplets by integrating the accelera-
tion due to the drag force assuming that the velocity of 
the gas and the radius of the droplet were constant. 

Droplet breakup: The red line in Fig. 1 shows the 
maximum stable size of droplets for a given differential 
velocity. Even in low density gas, roughly equivalent to 
the ambient nebula (Fig. 1, top), fluid bodies >1 m are 
unstable when the differential velocity is more than a 
few 100 m s-1. During acceleration of condensates, there 
is many orders of magnitude more kinetic energy avail-
able than required to create the increased surface area of 
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droplets of the critical size. Liquid fragments in the ex-
panding vapor plume, or incorporated into the bow 
shock, would be broken down to a range of different 
sizes depending on the local shear and gas density.  

During the initial collapse of the vapor plume, re-
verse shocks propagate back into the plume. These 
shocks rapidly reverse the flow leading to a large differ-
ential velocity with the condensates as they are dragged 
inwards. The shear between the liquid and reversing va-
por flow is felt by material that is collected by the in-
ward flow. This shear during reversal imposes the max-
imum size of droplets in the collapsed vapor plume.  

At differential velocities above about ~1 km s-1, the 
critical size of droplets becomes only weakly dependent 
on the differential velocity and plateaus at a value dic-
tated by the gas density. The density of a strongly 
shocked gas is a factor of (g+1)/( g -1) (~6) times the 
pre-shock density, where g is the ratio of specific heat 
capacities. Thus, the density of the shocked nebular gas 
is relatively insensitive to the impact conditions [4]. For 
such gas densities (e.g., Fig 1., middle panel), the max-
imum size is 0.1-1 mm, consistent with chondrule sizes. 
Thus, in the collapsed vapor plume model, we propose 
that the maximum size of chondrules is set by the global 
property of the density of the nebula, explaining the 
similarity in maximum chondrule sizes in different 
chondrites [1,2].  

A range of droplet sizes is expected, below the max-
imum size, due to heterogeneous shear in the plume. 

Coupling of condensates during collapse: The 
coupling time of condensates is highly sensitive to their 
size (Fig. 1). The coupling time for silicate droplets 
larger than ~1 cm are on the order of several hours to 
days, longer than the time for the dynamical collapse of 
the plume. During the supersonic collapse, silicates 
larger than ~1 cm would be left behind by the reversing 
flow and would not be efficiently concentrated in the 
collapsed plume. The stopping time of metal particles is 
several times longer than for silicates, consistent with 
the smaller size of metal grains in chondrites. 

Conclusions: Shear between condensates and vapor 
in the expansion and collapse of impact-produced vapor 
plumes in the nebula breaks down large molten frag-
ments into a range of sizes. The characteristic maximum 
size of chondrules, 0.1-1 mm, is set by the density of the 
gas during vapor plume collapse, which in turn is deter-
mined by the density of the nebula. Collapse of the va-
por plume concentrates only small particles. Thus, for-
mation of new planetesimals from material concentrated 
by a collapsing vapor plume may explain the absence of 
larger sized fragments in chondrites. 
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Figure 1: The stopping time for a spherical droplet of a 
given radius (x-axis) from an initial velocity (y-axis) to 
10 m s-1. Red line shows the maximum stable size of 
spherical droplets. Vertical dashed line shows the tran-
sition from the viscous to the Epstein regime. Horizon-
tal dotted line is the sound speed nebula gas at 2000 K. 
Panels show different gas densities. 
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