
 
Figure 1. Diagram of binary mineral mixtures with volume abundances noted in each square. The numbers give the percentage 

of the mineral written on the diagonal and “P” is an indication of pure minerals. 
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Introduction: Three styles of Raman instruments 

will arrive imminently on the surface of Mars. The 

ExoMars RLS instrument will use a 532 nm laser to 

probe powdered samples obtained by a drill [1]. Mars 

2020’s SHERLOC will utilize deep ultraviolet reso-

nance to scan habitable environments for organics and 

chemicals with Raman and luminescence [2]. Super-

Cam (also on Mars 2020) will interrogate surface ma-

terials with a 532 nm laser at long ranges [3]. 

The success of these instruments relies on availabil-

ity of appropriate databases and software for phase 

identification at relevant scales. The ~50 µm beam size 

of RLS and SHERLOC is small enough to primarily 

probe individual mineral phases, but the 1.3 mm beam 

size of SuperCam [4] and powdered samples presented 

to RLS are likely to produce mixed-mineral spectra. 

Unlike the unmixing algorithms developed for reflec-

tance spectroscopy, there is no equivalent Raman 

methodology for quantifying mineral abundances in 

mixtures. In fact, Raman spectra of mixed phases with 

known quantitative molar abundances do not exist in 

any public libraries. To begin to address this deficien-

cy, we report here a sample library (Figure 1) and 

spectral database consisting of fine-grained binary mix-

tures using 38 pure mineral phases. We then test how 

well individual mineral abundances can be determined 

using multivariate analysis. 

Background: Quantitative relationships between 

peak area and mineral abundance are obscured by 

many complicating factors in Raman spectroscopy: the 

exciting laser wavelength, the Raman cross-section of 

the minerals (dependent on the strength of covalent 

bonding and polarizability of the molecule), crystal 

orientation relative to laser polarization, and long-

range chemical and structural ordering in the crystal 

lattices [5]. Even if the Raman laser interrogates a 

broad area to avoid crystal orientation, variable Raman 

cross-sections of minerals prevent quantitative assess-

ment of mineral abundances in mixtures. Until a theo-

retical model for unmixing of Raman data is devel-

oped, empirical methods such as multivariate analysis 

and/or use of Raman Coefficients [6] are needed. 

Methods: Hand samples of 38 Mars-analog miner-

als were obtained from various vendors, as listed in 

Figure 1 [6]. Chemical analyses from electron micro-
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probe were used to calculate the density of each miner-

al comparing against literature values. Samples were 

crushed, handpicked for purity, and sieved, producing 

roughly 10g of each sample divided among grain size 

fractions of <25, 25-45, 38-125 and 45-125 µm. Mix-

tures were paired such that samples of the same grain 

size were used. Samples were then weighed into ratios 

of 50:50, 20:80, and 95:5 volume % depending on the 

Raman cross-sections of the paired phases. Mixtures 

were customized for each pair to ensure that each 

phase would have characteristic bands with sufficient 

peak areas to aid the multivariate analysis models. 

 
Spectra were acquired on a Bruker Optics BRAVO 

Raman spectrometer using dual laser excitation and a 

patented fluorescence mitigation strategy involving 

successive laser heating [7]. Three scans were obtained 

per spectrum using an integration time of 10s over the 

wavenumber range of 300-3200 cm-1. 

Results: All data show the expected nonlinearity of 

peak areas relative to their volumetric abundances in 

mixtures (e.g., Figure 2). Each individual band re-

sponds according to the Raman cross-section of the 

associated bond and other factors noted above. 

The multivariate techniques of partial least squares 

(PLS) and least absolute shrinkage operator (Lasso) 

were utilized to build models to predict mineral abun-

dances in each mixture. The PLS method regresses one 

response variable against multiple explanatory varia-

bles (intensity at each channel of the spectra), assigning 

coefficients to every single channel. As a result, when 

predicting an individual mineral abundance, coeffi-

cients of the PLS model should generally mirror the 

fingerprint of the Raman spectrum of that mineral, as 

observed for the San Carlos forsterite sample. In con-

trast, Lasso uses continuous shrinkage to reduce coeffi-

cients of spectral channels to as low as zero [8] if they 

do not contribute to the model. Thus channels used in 

Lasso models should track known peaks of each miner-

al but not necessarily include all of them.  

Leave-one-out cross-validated root mean square er-

ror (LOO RMSE-CV) for predictions of mineral abun-

dances are given in Table 1 as a proof of concept for 

several mineral species using PLS and Lasso in units of 

the mineral volume %. Both techniques produce com-

parable results for each of the four phases. Accuracy 

for predicting mode is ca. ±4 volume %, comparable to 

errors associated with unmixing of reflectance spectra. 

Ongoing work will predict modes of the remaining 

minerals. Our expectation is that minerals with highly 

ionic bonding and correspondingly low Raman cross 

sections will have higher prediction errors. 

Table 1. Multivariate prediction error of minerals in mixtures 

(n = 275) on Bruker’s BRAVO Raman spectrometer. 

Mineral C Model 
Internal 

R2 

LOO RMSE-

CV 

anhydrite 5 PLS 0.84 4.4 

 0.019 Lasso 0.96 4.5 

calcite 3 PLS 0.86 4.3 

 0.002 Lasso 0.99 4.2 

diopside 10 PLS 0.87 6.2 

 0.008 Lasso 0.99 5.2 

magnesite 7 PLS 0.87 4.1 

 0.007 Lasso 0.98 3.7 

Note: Wavenumber range of 300-1200 cm-1, C/ = compo-

nents for PLS models and  for Lasso models. 

Discussion and Future Work: Multivariate results 

were obtained here from a dataset of 275 spectra, but 

more data are still needed. Diversifying the mixtures 

beyond the three ratios utilized here by expanding the 

abundance ranges and filling in gaps for each mineral 

phase would likely improve each multivariate model. 

We are also working to expand the number of phases 

present in the mixtures, though this is a formidable 

undertaking given the requirement of high purity and 

large volumes of mineral separates. 

These mineral mixtures represent a huge advance in 

the number of intimate mixtures available for further 

study of Raman unmixing. As ExoMars and Mars 2020 

approach, analyses of these samples on equivalent in-

struments to those of the missions should enhance our 

ability to identify minerals within mixtures on Mars 

and constrain the error of those predictions. This work 

underscores the need for the creation of additional 

mineral mixtures to prepare for Mars exploration uses, 

as well as to pursue the unmixing problem computa-

tionally through software development.  
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Figure 2. Spectra of three binary mixtures consisting of for-

sterite, calcite, labradorite, and diopside.  
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