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CONVECTION IN TITAN LAKES: FLUX-DRIVEN WITH TIME-DEPENDEN T UPPER BOUNDARY CONDITION. D.
G. KorycanskyCODEP, Department of Earth and Planetary Sciences, University of California, Santa Cruz CA 95064 , O. Umurhan,
SETI Institue, Mountain View, California USA 94043 .
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Figure 1: Three timesteps of a convection calculation with
Ra= 107, Pr = 1, with bottom boundary conditiotF /dz=1,
top boundary conditiofly = 0.5ATg[1+ sin(27t/P)], andP =
0.01.
Figure 2: Plots of Nusselt numbbiu— 1 vs. time for four dif-
ferent convection models differing the periBdf the thermal
boundary condition at the top of the grid. (The top panel has
a constant temperatufig = 0.5 at its top boundary.) Calcula-
tions were done on a 522182 withRa = 10" andPr = 1.

Introduction Convection modeling

We solve the equations for two-dimensional convection & th

One of the most striking aspects of Titan’s surface is thepre Boussinesq approximation (Tritton 1988) using a vorticity
ence of large lakes and seas composed of liquid methane andstreamfunction formulation:

ethane. The volume of these liquid bodies is comparablesto th

largest lakes on Earth. 0(7(;) u.0w— —RaPr t;l +Prw,
Based on the idea that solar insolation on the 16-day diurnal oT ) X
cycle of Titan’s orbit around Saturn, we are investigatihg t ot +u- 0T =0T
character of possible convection in Titan’s lakes. We agsum w=-0%, u=0xy (1)

that there is a signficant thermal flux from Titan’s interibat

is capable of driving convection, coupled with diurnal medu The equations have been non-dimensionalized in terms of the
lation of the temperature at the top surface. At this stage we domain depthL,, a nominal temperature differend€ly =

are investigating idealized convection models with thexidé L,dTy/dz and the diffusion timeq = L2/k. The tempera-
understanding the effects of the temporal boundary madulat  ture is T, the vorticity isw = [ x u, the streamfunction is

on overall heat transport in a convective situation. @ with the velocityu = (u,w) derived from the curl ofy.
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The parameters determining the strength of the buoyancy and Some preliminary results

viscous forces are the Rayleigh numiiRa = ngATdLg'/VK
and the Prandtl numbé¥r = v/k. The bottom boundary for
temperature condition is given by the (non-dimensionalj flu
F, = dT/dz and for the top we have a time-dependent tem-
peratureT; = 0.5ATp[1 + sin(2mt/P)] so that the temperature
has a sinusoidal time-dependence with peRahd amplitude
To. We have free-slip velocity boundary conditions on top and
bottom (¢ =0, dw/dz = 0). All quantities are horizontally
periodic, and we Fourier-transform the variablexiand use
finite differences irz for the solution of Poisson’s equation for
the streamfunction. Quantities are transformed back tb rea
space i for the finite difference solution (using an Arakawa

The initial condition isT = 0 throughout the domain. Convec-
tion is driven by the bottom heat flud& /dz. The temperature
modulation at the top is sufficiently large to shut down con-
vection, although if the perioB is long enough, the continued
input flux would re-establish convection that would folldwet
(slowly-changing) top boundary condition. We are intezd$n
conditions where the temperature at the top is changinglsapi
enough to influence heat transport through the domain.

The figures show some results for runs with the flux bot-
tom boundary condition and different modulation periods fo
the top boundary temperature. Figure 1 shows the temperatur

scheme for the non-linear terms, Arakawa and Lamb 1981) of field at (non-dimensional) times= 0.1, 0.3, and 0.4 for the

the vorticity and temperature equations, with a seconeord

case in which the modulation periéd= 0.01. Figure 2 shows

Adams-Bashforth scheme for time advancement. The calcula- Nu— 1 for three different cases with different top-boundary

tions we show in this abstract were done wRa = 10’ and
Pr =1 on a 512« 182 grid with constant bottom heat flux and

temperature oscillation periodd For the shortest perioB,
the modulation controls the overall behavior and the heattr

time-dependent temperature at the top as described. The hor fer is limited. For longer periods, the convective activitpre

izontal aspect ratio of the grid is/L; = 2.828. A quantity

of interest is the Nusselt numbBiu, which gives the vertical
heat transpork woT /dz > normalized to a nominal diffusive
heat fluxkdTy/dz, whereTy = 1— zis a nominal convectively
stable linear temperature profile.

closely follows the underlying temperature field as it ditfis
from the upper boundary; convection increases when the gra-
dient of temperature field steepens.
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