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Introduction: Ureilites are an enigmatic class of me-
teorite (see review by Goodrich et al. [1]). After HEDs 
from Vesta, they are the most common achondrite. 
Based on  ε50Ti and ε54Cr anomalies, ureilites formed 
in the inner solar system [2], at about 2.7-2.8 AU [3]; 
yet they are far richer in C (graphite ~3wt%) than other 
inner solar system bodies (< 1wt%), and as C-rich as 
the most C-rich carbonaceous chondrites [1]. 
     The ureilite parent body (UPB) melted but only 
experienced partial (~15%) extraction of silicate melt 
[1], and some S-rich metal [4]. Based on pigeonite-
olivine thermometers, the UPB reached ~1200°C. Oli-
vine cores in ureilites exhibit a wide range of Mg# (74-
96, strongly peaked at 80), often attributed to pressure-
sensitive ‘smelting’ reactions (reduction of FeO in 
silicates to Fe metal by reaction with C), such as [5]: 

(Fe,Mg)2SiO4 (olivine) + CaO +SiO2 (in melt) + C  à 
2 (Mg,Ca)SiO3 (pigeonite) + Fe (metal) + CO (gas). 

Many properties correlate with Mg#: oxygen isotopes 
and FeO/MnO of olivines [6], carbon isotopes of asso-
ciated graphite [6], and Cr valence states of olivine [7].  
     The UPB was catastrophically disrupted [1] early in 
its history (the youngest samples formed at t = 5.4 Myr 
after CAIs [8]), while at ~1200°C. Microns-thick re-
duction rims around olivines speak to a release of pres-
sure, followed by a rapid cooling over hours [1,9]. The 
UPB (and impactor) reassembled into numerous small-
er ureilite daughter bodies (UDBs), from which ureilite 
meteorites derive. Neither the largest remnant nor its 
collisional family has been identified yet. 
     Within the graphite in ureilites are abundant 
nanodiamonds (< 100 nm) likely formed by shock dur-
ing the impact [10]. Graphite in the polymict ureilite 
Almahata Sitta also holds larger (~100 µm) diamonds 
argued to have formed at static high pressures > 2 GPa 
[11], much higher than the highest pressures in aster-
oids, ~0.1 GPa. Recently, [12] analyzed small (< 100 
nm) Fe-Ni-P-S inclusions within these diamonds, con-
cluding they formed from decomposition of the phase 
(Fe0.932Ni0.068)3(P0.12 S0.88), stable only at pressures > 21 
GPa [13] characteristic of planetary interiors. [12] sug-
gested the UPB was a Mercury- to Mars-sized body, 
now lost. This would be inconsistent with partial melt-
ing on the UPB.  
     All of these features about ureilites are mysterious. 
Here we present a unifying hypothesis that explains 
them. We especially argue that the C and diamonds in 
ureilites are largely exogenous, deriving from Mars.  

Production of Diamonds in Mars: Mars is known 
from Hf-W [14] and 60Fe-60Ni [15] systematics to have 
accreted mostly between t = 1 to 3 Myr, very likely by 
pebble accretion [16]. It therefore accreted cold (< 
1000°C), but quickly heated by 26Al  decay, producing 
a global magma ocean [17,18]. We predict Mars first 
reached the Fe-S eutectic temperature (988°C) and 
formed a S-rich core with high-pressure eutectic com-
position (14.4wt% S); given Mars’s S inventory [19], 
the core at first had only ~3/4 of Mars’s Fe. Immisci-
bility of S and C in metallic melts limited the C dis-
solved in the melt to ~1/4 of Mars’s C inventory. Fur-
ther heating then yielded a whole-mantle magma ocean 
[17,18], delivering the remaining metal and the re-
maining ~3/4 of Mars’s C to the core, by t = 3 Myr. 
     As diapirs of the last, C-rich metal joined the S-rich 
metallic core at the core-mantle boundary (CMB), at 
pressure 22 GPa, diamonds would be produced. In 
experiments, when S-rich and C-rich metallic melts 
combine at > 7.5 GPa, diamonds spontaneously nucle-
ate and grow at rates ~1 µm/hr [20,21]. We calculate 
that if diapirs sank ~ 10 m into the core, the diamonds 
would have grown to ~100 µm in size. We calculate 
the abundances of Fe, Ni, S and P in the two metallic 
melts, using partitioning coefficients of [22] to find 
that 30% of Mars’s P entered only the second, C-rich 
melt. We find a 50-50 mixture of the two melts would 
yield exactly the unusual stoichiometry of the metallic 
inclusions in the large Almahata Sitta diamonds.  

We calculate the densities of melt in the whole-
mantle magma ocean assuming an adiabat T = 1440°C 
+ (30°C)(P / 1 GPa). The diamonds were positively 
buoyant in the core and lower mantle (P > 5.7 GPa) 
and were advected upward by convection. Above the 
6.0 GPa, T = 1620°C level, diamond was unstable and 
transformed to lower-density graphite at known rates 
[23]; diamonds reaching the surface were ~30% graph-
ite and positively buoyant relative to the melt; being > 
20 µm in size (the largest size particle that could re-
main in suspension in the convecting martian magma 
ocean [24]), they fell upward out of suspension and 
collected near the surface. By t = 3 Myr, about 1/4 of 
Mars’s C resided in a thick graphite-diamond layer (up 
to 10vol%) in Mars’s upper mantle/crust, as chondritic 
material continued to accrete onto Mars’s surface.  
 
Ejection of the Martian diamonds: The Borealis ba-
sin impact was one of the largest impact events in the 
solar system, and ejected ~ 0.01 Mars masses of mate-
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rial from the surface down to >200 km depth (2.5 GPa) 
[25]. It produced over 100 fragments >100 km, many 
unmelted, that would have reached 2.9 AU [25]. If the 
impact occurred at t~5 Myr, fragments would have 
sampled the surface before mantle overturn [26], in-
cluding crystallized martian magma ocean (MMO), 
plus carbonaceous chondrites, plus the diamonds 
formed at Mars’s CMB. A mix of 55% MMO, 20% 
CV and 25% CI chondrite would have olivines with 
Mg#77 and Δ17O=-0.4%0. This mixture matches one 
end-member composition in ureilites identified by [6]. 

 
The UPB before the Collision: We argue the UPB 
formed with olivines with Mg#80-85, FeO/MnO=43, 
Δ17O=-0.9%0, and some C with δ13C=-7%0. It would 
be well approximated by a mix of 63% H, 33% CV, 
and 4% CI chondrite, which would have olivines with 
Mg#75, FeO/MnO~45 and Δ17O=-0.7%0, and ~0.4wt% 
C with δ13C=-7.7%0. The UPB would have resembled 
Vesta, modeled as 70% H + 30% CV [27]. Smelting 
reactions with C and silicate melt (likely CAI melt) 
would have generated olivines with higher Mg#. Such 
smelting processes would lead to observed correlations 
of oxygen isotopes and Fe/Mn with Mg# [6]. Based on 
the fraction of olivines not smelted due to high pres-
sure, we estimate the UPB had radius 168 km.  
 
Collision with the UPB: We argue that at t≈6 Myr, a 
fragment from Mars collided at 5 km/s with the UPB at 
~2.7 AU. The impactor and UPB catastrophically dis-
rupted and mixed to form UDBs. UDB silicates would 
sample either specific depths in the UPB, or the mar-
tian surface. Based on the fraction of ureilites with 
olivines with Mg# <80, we estimate the impactor had 
radius 113 km. Within each UDB, metal from the im-
pactor and metal from the UPB would have melted and 
flowed; metal would match the mix identified by [4]. 
Flowing metal would have mobilized graphite from the 
impactor, distributing the large martian diamonds.  
 
The Largest UDB: The asteroidal source of ureilites is 
unknown. Based on the trajectory of meteoroid 2008 
TC3 (i.e., Almahata Sitta), [29] calculated it came from 
either the ν6 resonance at 2.05 AU or the 3:1 resonance 
at 2.50 AU; the ε54Cr anomaly of ureilites [3] suggests 
an origin beyond 2.5 AU. Although Almahata Sitta 
spectrally resembles F type asteroids [29], it was a rare 
polymict ureilite; more common monomict ureilites 
spectrally resemble S(III) asteroids [30]. Based on the 
sizes of the UPB and impactor and the collision veloci-
ty, we use the formalism of [28] to estimate the largest 
fragment has radius 135 km. We therefore seek an 
S(III) asteroid ~135 km in radius at ~2.7 AU, with an 
extensive collisional family that is 4.5 Gyr old. 

     The S(III) asteroid 15 Eunomia has radius ~132 km, 
and orbits at 2.64 AU. It has an extensive collisional 
family with thousands of members; assuming thermal 
conductivity k = 0.1 W/m/K, its age is 4.5 Gyr [31]. 
Eunomia is non-spherical, with one end rich in olivine, 
the other rich in pyroxene. Olivine is commonly asso-
ciated with material launched from Mars, e.g., A type 
asteroids and martian Trojans [32]. The ν6-ν5+ν16 secu-
lar resonance can transport UDBs from 2.64 AU to 
2.54 AU. The F type asteroid 438 Zeuxo orbits at 2.55 
AU. With k = 0.1 W/m/K, fragments the size of 2008 
TC3 could Yarkovsky drift 0.05 AU within Almahata 
Sitta’s cosmic ray exposure age of 20 Myr [33], from 
2.55 AU to 2.50 AU, and be delivered to Earth. 

 
Other samples of Mars in the asteroid belt: The 0.01 
Mars masses ejected by the Borealis basin impact ex-
ceeds the total mass of the asteroid belt today. Besides 
the fragment that collided with the UPB, we suggest A 
type asteroids [32] and two eclogitic clasts in CR 
chondrites [34,35] as deriving from Mars at t~5 Myr. 
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