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Introduction: NASA’s Lunar Reconnaissance Or-

biter Narrow Angle Camera (NAC) has taken more 

than 1.6 million images of the lunar surface since it has 

been launched in 2009. Most of these images have not 

been utilized for scientific inquiry so far, due to the 

size of the dataset and current limitations in automated 

data processing and exploitation capabilities. 

Amongst numerous applications, NAC images can 

be used to detect and map rockfalls. Investigation of 

the spatial distribution and magnitude of lunar rockfalls 

can help to improve our understanding of past and cur-

rent tectonic activity [1], as well as the evolution and 

terramechanics of the lunar surface [2,3], among oth-

ers. 

Methods:  

Recent advances in computer vision and deep 

learning allow for the automated detection of objects in 

images. We implemented a single-stage dense object 

detector (RetinaNet) [4] that is able to identify and map 

lunar rockfalls with boulder tracks using NAC imagery. 

For Deep Neural Network (DNN) training ~3000 orig-

inal rockfall images have been augmented to ~240000 

images, applying image rotation, flipping, and up- and 

downsampling. The resulting DNN is feature rotation- 

and scale invariant. DNN performance concerning Re-

call, Precision, and Average Precision has been as-

sessed by using testing images that have been labelled 

by an experienced human operator. 

Results: The trained DNN is able to detect rock-

falls with trails in the available NAC imagery (Fig. 1). 

Processing time for a single NAC image in RetinaNet 

is about 10 seconds using a GeForce GTX 1080 Ti and 

a GeForce Titan Xp, which is orders of magnitude fast-

er than an experienced human operator. The DNN 

achieves recall values between 98 and 39 % (% detect-

ed), precision values between 100 and 25 % (% correct 

detections), and average precisions (AP) ranging from 

89 to 69 % (average of the maximum precisions at dif-

ferent recall values), depending on the used confidence 

threshold (CT) and Intersection-over-Union (IoU) (Ta-

ble 1). Using the detections’ bounding box diameter, 

the size of the detected boulders can be estimated. 

False Negatives (FN) and False Positives (FP) can 

be caused by 1) insufficient spatial resolution of the 

used input images, 2) unfavorable illumination condi-

tions that cause extreme shadows (Fig. 2e), and 3) con-

flicting objects within the immediate surrounding of the 

rockfall that confuse the trained network (Fig. 2d).  

 
Fig. 1. Example of RetinaNet detections (white rectan-

gles, TP). Yellow bboxes indicate false negatives (FN). 

 

Multiple detections of the same rockfall can be ef-

fectively removed using a Non-Maximum-Suppression 

filter. 

Conclusions: A Deep Neural Network has been 

implemented and trained to automatically detect and 

map lunar rockfalls with traces in NAC imagery. DNN 

performance and speed allow to exploit the entire NAC 

image archive and to produce rockfall distribution and 

magnitude maps on large or even a global scale. Pre-

liminary results of such a map are displayed in Fig. 3. 

The trained DNN is being implemented as a tool in 

NASA JPL’s Moon Trek platform that is part of the 

Solar System Treks Project (trek.nasa.gov/). An on-

demand web-based approach brings the user to the 

data, not the data to the user, thus, avoiding data down-

load and storage limitations. This tool will eventually 

be available for usage by the scientific community. 

Acknowledgements: Thank you to Emily Law, 

Brian Day, the Moon Trek team at NASA JPL, Em-

manuel Baltsavias, Silvano Galliani, Julie Stopar, and 

NVIDIA. 

References: [1] Kumar P. S. et al. (2016) JGR: 

Planets 121, 147–179. [2] Filice A. L. (1967) Science, 

156, 1486-1487. [3] Bickel V. T. et al. (2018) JGR: 

Planets (submitted). [4] RetinaNet ‘Fizyr’ (2018) 

GitHub. 

1595.pdf50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132)



Table 1. Validation results, reported as AP, recall, and precision results for IoU values of 0.1, 0.25, and 0.5. 
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CT AP10 Recall10 Precision10 AP25 Recall25 Precision25 AP50 Recall50 Precision50 

0.2 

0.89 

0.98 0.45 

0.84 

0.96 0.35 

0.69 

0.88 0.25 

0.3 0.90 0.63 0.88 0.54 0.82 0.35 

0.4 0.77 0.86 0.77 0.84 0.75 0.60 

0.5 0.69 0.98 0.69 0.95 0.65 0.79 

0.6 0.44 1 0.44 0.96 0.39 0.85 

 

                                    
Fig. 2. Examples for influence of NAC image features and rockfall neighborhood on detection, including FPs (2f). 

 
Fig. 3. RetinaNet performance illustration: White shapes mark confirmed positive rockfall detections in 2 NACs. 
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