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Introduction.  Studies of late-stage planet for-
mation allow for better understanding of final config-
uration and geochemistry of the terrestrial planets 
through chaotic growth, as hundreds or thousands of 
planetary embryos and planetesimals undergo giant 
impacts. In N-body dynamical studies, each collision 
has traditionally been assumed to be perfectly accre-
tionary [e.g., 1], but this is a gross simplification (e.g., 
[2]). As such, modern N-body dynamical studies have 
begun to take into account more complex outcomes of 
giant impacts (e.g., [3, 4, 5]). In principle, one could 
model collisions “on the fly”, e.g., using Smoothed 
Particle Hydrodynamics (SPH) codes to model an 
impact, while halting the N-body evolution temporari-
ly [6]. This approach, however, requires the use of 
low numbers of SPH particles (~104), because the N-
body evolution has to wait for the SPH code to finish. 
Furthermore, post-processing analysis of the collision 
outcome increases the number of bodies N, thus re-
quiring trade-offs between resolution of the collision 
debris field and computational time. 

What is really needed is a summary of the out-
come of the impact: a description of the largest two or 
three remnants, in terms of mass, thermodynamic and 
orbital state, rotation, as well as statistical information 
about the debris field, e.g, mass and velocity distribu-
tion.  

Our approach is to use high-fidelity SPH calcula-
tions to train a data-driven model of planetary colli-
sions. We generalize the underlying relationship be-
tween input x (the impact conditions) and output y 
(the outcome) by means of a neural network. Neural 
networks are parametric functions y=f(x;W) that are 
trained on pre-processed SPH outcomes (i.e., data 
entries of the type {x; y} = {impact conditions; colli-
sion outcomes}. The networks do not interpolate the 
training data, as this would lead to undesirable poor 
prediction performance on unseen data (overfitting). 
Networks rather generalize the functional relationship 
between input and output, without loading any physi-
cal assumption in the model (i.e., fully data-driven 
approach). The network predicts the collision out-
come at many times the free-fall collision timescale 
after the collision. If compared to the “parent” SPH 
code, the data-driven model runs much faster (less 
than a second), thus enabling realistic modeling of 
“on-the-fly” collisions; however, a large, well-
sampled database of giant impact outcomes is neces-
sary [e.g. 7-8].  

Methodology: To start, we performed a pilot 
study [9] aimed at characterizing the currently availa-
ble dataset (about 1000 SPH simulations of collisions 
between similar-size differentiated chondritic bodies 
[7-8]) and to develop a prototype of the data-driven 
model. We trained two distinct machine-learned re-
sponse functions for collisions in the gravity regime: a 
classifier of collision types and a regressor of the 
mass of the largest remnant. Both tools map a 4-
Dimensional parameter space (mass of the target, im-
pactor, impact velocity and angle) into collision out-
comes. The classifier associates the impact conditions 
to one of the four major collision types identified for 
giant impacts: merger, graze-and-merge, hit-and-run, 
and disruption [2, 10-11]. The regressor is a neural 
network trained to predict a floating-point variable 
(accretion efficiency) with a known degree of approx-
imation with respect to “parent” SPH simulations. 
Both tools are fully data-driven; the results do not 
suffer from any model assumption in the fitting (Fig-
ure 1). This work used a dataset that is sparse in many 
regions of importance, but the tools can be easily up-
dated as the training landscape is expanded as new 
simulations become available.  

Data-driven collision model: The tool presented 
in [9] is a prototype of a more complete “surrogate” 
model that we envision. The surrogate model summa-
rizes the aspects of the outcome that are relevant to N-
body dynamical studies, quickly and reliably predict-
ing specific outcomes: the masses of the two or three 
largest remnants, their post-collisional orbits and spin 
states, and the size distribution, velocity dispersion 
and composition of debris. The tool will be optimized 
to apply to especially N-body planetary evolution 
calculations and to constrain pre-impact dynamical 
conditions from hypothesized post-collision scenarios 
[12].  

The concept of a machine-learned, data-driven 
model is new research that can be extended to other 
collisional regimes. For example, in “small giant im-
pacts” (planetesimals colliding and accreting at 
around their mutual escape velocity), material 
strength and friction are more important than shocks 
(e.g., [13-14]), and additional effects such as friction 
and cohesion [15] require higher numerical resolution, 
and much smaller timesteps, so that much more com-
putational effort is required for a given simulation. A 
surrogate model in this regime would be instrumental 
for studies of asteroid family formation, fragment re-
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accumulation and comet formation via catastrophic 
disruption (e.g., [16] and [15] for previous studies, 
respectively). At the other extreme, collisions be-
tween super-Earths or mini-Neptunes require reliable 
treatment of an atmosphere (e.g., [17]) which repre-
sents another major computational challenge that 
would benefit from surrogate model development.  

 New potentialities: Machine learning can also 
play a role in SPH simulation post-processing. The 
use of deep neural networks (e.g., Convolutional Neu-
ral Networks) could significantly improve the reliabil-
ity and the timing of clump detection, thus enabling 
higher resolutions and shorter runtime, as well as pre-
venting the introduction of human errors in the detec-
tion. Additionally, machine learning can be used to 
reveal new and unforeseen trends and relationships in 
the data via unsupervised machine learning. This is 
possible and likely to happen, because machines are 
capable of exploring trends in an N-dimensional pa-
rameter space, thus they can suggest improvements 
for the development of better collision models, at all 
scales. Finally, a neural network is a parametric func-
tion that can be used to constrain the likelihood of 

specified scenarios of planet formation, i.e., the func-
tion is invertible. Rather than a collection of possible 
scenarios, there can be an inversion of outcome, thus 
providing an optimal machine-learned solution to 
long-standing questions of planetary formation, such 
as the origin of our Moon or the genesis of modern 
Mercury.     
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Figure 1. In the left panel, results from [5] for a mass of the target of 0.1 Earth masses and mass of the impactor of 
0.07 Earth masses. The decision boundaries of the classifier of collision classes (black curves) are superimposed to 
a map of accretion efficiency: (mass of the largest remnant – mass of the target)/mass of the impactor, whose val-
ues range from full accretion (~1), to erosion and partial accretion (across the transition from the “hit-and-run” to 
the “graze-and-merge” regime) to disruptive scenarios. The right panel shows the same map but generated using 
the scaling laws proposed by [18] for the same combination of mass of the target and mass of the projectile. [18] 
uses hard boundaries for the angular threshold of the hit-and-run regime [2] which produces the hard vertical 
boundary in the right panel. [18] uses the velocity hit-and-run criterion from (Kokubo & Genda 2010); we do not 
consider the uncertainty propagation in this formulation, which produces the hard horizontal boundary in the right 
panel. The comparison is qualitative and aims to highlight the differences and similarities in the adopted method-
ologies for the definition of the scaling laws, i.e., fully data-driven approach (left panel) versus empirical, physics-
based  scaling (right panel).  
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