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Introduction:  ChemCam is an active remote 

sensing instrument suite that has operated successfully 

on MSL since its landing in 2012 [1, 2]. It uses laser 

pulses to remove dust and to profile through weather-

ing coatings of rocks up to 7 m away. Laser-induced 

breakdown spectroscopy (LIBS) obtains emission 

spectra of materials ablated from the samples in elec-

tronically excited states. The intensities of these lines 

are proportional to the abundance of the related ele-

ment. ChemCam is sensitive to most chemical major 

elements as well as to a set of minor and trace ele-

ments such as Li, Sr, Ba, and  Rb that are quantified. 

Qualitative and quantitative relationships between 

elements can be identified using univariate and multi-

variate techniques [3, 4]. One challenge of the data 

interpretation is to rapidly identify similar composi-

tional and hence mineralogical phases or mixtures in 

the LIBS spectra. Some classification analyses have 

already been performed on these data using Independ-

ent Component Analysis (ICA) [5] or clustering tech-

niques [6]. In this paper, we want to test and evaluate 

the performances of machine learning techniques. 

Here, we specifically focus on Artificial Neural Net-

work (ANN) [7] . 

ANN: In common ANN implementations, the sig-

nal at a connection between artificial neurons is a real 

number, and the output of each artificial neuron is 

computed by some non-linear function of the sum of 

its inputs. The connections between artificial neurons 

are called 'edges'. Artificial neurons and edges typical-

ly have a weight that adjusts as learning proceeds. The 

weight increases or decreases the strength of the sig-

nal at a connection. Artificial neurons may have a 

threshold such that the signal is only sent if the aggre-

gate signal crosses that threshold. Typically, artificial 

neurons are aggregated into layers. Different layers 

may perform different kinds of transformations on 

their inputs. Signals travel from the first layer (the 

input layer), to the last layer (the output layer), possi-

bly after traversing the layers multiple times. In this 

application we use a multilayer perceptron (MLP) 

which is a family of feedforward artificial neural net-

work. An MLP consists of, at least, three layers of 

nodes: an input layer, a hidden layer and an output 

layer. We use this configuration in our application. 

Except for the input nodes, each node is a neuron that 

uses a nonlinear activation function. For the first two 

layers the activation function is the “Rectified Linear 

Unit” and “Softmax” for the last layer. The loss func-

tion which measures the inconsistency between the 

predicted value and the actual label is the categorical 

cross-entropy. In this application we will use the 

Keras package (https://keras.io/) which is a high-level 

neural networks API, written in Python and capable of 

running on top of TensorFlow   

(https://www.tensorflow.org/)  that is an open-source 

machine learning library for research and production. 

Data pre-processing: It is common to pre-process 

the data before feeding the model. Usual procedures 

include normalization of the data and/or achieving a 

dimensionality reduction like the projection on eigen-

vectors of the covariance matrix (Principal Compo-

nent Analysis (PCA)). We choose instead to use the 

Independent Component Analysis (ICA) which has 

been demonstrated to have better selection properties 

than PCA [8]. After this operation we are left with 10 

ICA score components which need to be compared to 

the 6144 channels of the ChemCam LIBS spectrum. 

Results: As a preliminary test we will focus on 

three distinct families, two “simple,” i.e., Ca-sulphates 

and Fe-rich, and one “complex,” i.e., K-feldspar. In 

the first step we need to build the training database for 

these three families. We choose to take a known sam-

ple of each family and to correlate it with all the spec-

tra. We retain the spectra that have a correlation coef-

ficient larger than 0.95. The samples are “Rapitan-9”, 

“Stark” and “Egg_Rock-1” for the Ca-sulphates, K-

feldspar and Fe-rich respectively. With this procedure, 

we select 834, 91 and 26 samples for the Ca-sulphates, 

Fe-rich and K-feldspar respectively. The low number 

of samples in the K-feldspar family may potentially 

explain the difficulty of obtaining a good training set 

for this family. We run some cross-validation models 

having divided each set of families in four parts. On 

average, the Ca-sulphates are predicted in the test sets 

at 98%, the Fe-rich at 91% and the K-feldspar at 75%. 

This lower value for the K-feldspar may be explained 

in two ways: either due to the sparsity of the samples 

or the way we select the samples. Indeed the simple 

correlation method may select targets that are not K-

feldspars. Interestingly two of those targets are always 

the same, namely Keith-4 and  Weed_Creek-3 that, 

looking at the spectra and at their composition may 

question their relationship to the K-feldspar family 
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(Fig. 1). Using the model we have built we can now 

predict for all the 17251 ChemCam spectra (up to Sol 

2247) to which family they belong and analyse how 

the model performs, i.e., do the spectra that are at-

tributed to a family and that are not in the training set 

belong effectively to that family? The model returns a 

number between 0. and 1. for each sample and each 

class. To attribute a sample to a family we need to put 

a threshold above which the sample is said to belong 

to the family. Depending on this threshold, it can 

happen that a given sample belongs to two classes. 

 
Figure 1: Keith-4 and Weed-Creek-3 spectra showing 

the high Si content but also large Ti lines 

 

In the Ca-sulphate family, two points are found to 

be a fluorite and an apatite and not a Ca-sulphate, 

namely Alvord-1 and Yampi-7 because they exhibit 

the characteristic CaF molecular emission line [9]. It 

is worth noting that many others large CaF emission 

bearing spectra are not selected by the model like the 

two others Alvord points or Epworth-5 demonstrating 

the relatively good robustness of the model. In the Fe-

rich family, nodules points isolated in the bedrock 

have been detected like Grange [10]. Interestingly, 

some mixtures of Fe-rich with silicates are identified 

like Kilpfonteinheuvel_ccam-1, as well as Ca-

sulphate-rich targets like Quarry_Haven-4, in which 

target points #3, #9 and #10 are flagged as Ca-

sulphate. Newmachar-DRT-9 is shown to also belong 

to the Ca-sulphate family  (fig. 2). The K-feldspar 

family is interesting because the model finds almost 

all the  K-feldspars that have been previously identi-

fied [11], along with some others that weren’t identi-

fied before, like some blind targets (CC_BT_386a, 

CC_BT_434a, shot at a fixed angle from the rover) 

[12].  In the K-feldspar class the Askival target, which 

looks like a cumulate and exhibits light-toned (major) 

phenocrysts, dark-toned well crystallized fine-grained 

patches, and gray-toned and dark-toned veins [13], 

shows up strikingly (Fig 3.) 

Summary: Preliminary results using machine 

learning techniques are encouraging. Further im-

provements can be considered, like the construction of 

reliable training sets using unsupervised classification 

techniques. From the neural network point of view, 

other choices of the optimizer should be tested as well 

as number of layers and their neuron contents. An 

obvious development of this work will be to include 

more classes. 

 
Figure 2: Fe-rich samples detected by the model ex-

hibiting the Ca lines in Newmachar-DRT-9 and Quar-

ry_Haven-4 and Si lines in Klipfonteinheuvel_ccam-1. 

 
Figure 3. Detection of K-feldspars The Askival target 

is strongly selected. 
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