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Introduction: The Hayabusa2 sample-return mis-
sion [1] reached the Near-Earth Asteroid (162173)
Ryugu and deployed the MASCOT lander [2], which
carried the MARA infrared radiometer [3]. MARA
measured brightness temperatures of a single boulder
for a full diurnal cycle, and the thermal inertia of this
boulder was estimated to be 247-375 ] K~ 'm™2s~1/2
[4]. While this value is low when compared to meas-
urements of meteorites, it is consistent with data of the
Hayabusa2 thermal infrared mapper (TIR) [5] and
ground based observations. Furthermore, it appears to
be representative for the majority of boulders on the
surface of Ryugu.

Prior to the visit of Hayabusa2, the low thermal in-
ertia of Ryugu was interpreted in terms of a regolith
cover with dominant grainsizes in the millimeter to
centimeter range [6]. However, Ryugu’s surface is
covered by a surprisingly large number of decimeter to
meter sized cobbles and boulders with thermal proper-
ties similar to the ones observed by MARA [7] and
little or no fine regolith. Therefore, it seems likely that
the boulders themselves have low thermal conductivity,
which may be associated with a relatively high porosi-
ty.

Methods: We derive the thermal conductivity and
porosity of the boulder observed by MARA k,;(¢)
from its thermal inertia I" and a model for the thermal
conductivity as a function of porosity k(¢). Given
typical grain densities p, for Cl meteorites, and a pa-
rameterization for the temperature-dependent heat
capacity c¢,(T) [8], observed thermal conductivity is
then given by
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¢, was calculated for a temperature of 230 K, corre-
sponding to the average nighttime temperature ob-
served by MARA.

We use three different models of k(¢) to constrain
the boulder’s bulk porosity and thermal conductivity
by setting kops () = k().

The first model fits experimental data for H and L
chondrites and can be interpreted in terms of cracks

kobs (¢) =

being the dominating conductivity reducing mecha-
nism [8]:
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A second similar model fits the same dataset, but
uses a different functional dependence for k(¢). This
model has the advantage of not diverging at low poros-
ities [9]:

ky (‘l’) =
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A third model [9] has been proposed based on theo-
retical considerations for partially sintered granular
material:

k3(¢) =ko(1—a )

Here k, is thermal conductivity at zero porosity and
the parameters k,and a were scaled to fit the thermal
conductivity of CV3 chondrite Leoville and CK4
chondrite Northwest Africa 5515, which follow a dif-
ferent trend in k(¢) than the H and L chondrites.

All of the above models suffer from the fact that
thermal conductivity data at high porosity is missing,
and consequently, models are poorly constrained at
high ¢. To start filling this data gap we performed
laboratory measurements of samples at high porosities.
We have used a transient hot strip (THS) method [10]
to measure thermal conductivity of a CI2 Tagish Lake
based analogue material which was produced by crush-
ing constituents mixing them wet condition, and finally
drying them [11]. This material was developed at the
University of Tokyo as a mechanical analogue for
Phobos regolith (UTPS). A block of the material was
cut and the THS was placed between two slabs of the
analogue material. Measurements were performed
under vacuum conditions < 10° mbar at temperatures
ranging from -150°C to +50°C.

Results: The CI2 Tagish Lake analogue (UTPS) is
a highly porous sample. The measured bulk density of
the material was 1.4 g/cm® while the grain density is
2.81 g/lcm®implying a porosity of ~50%. We found a
very low bulk thermal conductivity of 0.04 W/mK at -
150°C and 0.1 W/mK at +50°C. and results are shown
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in Figure 1. For -50°C, representative for nighttime
temperatures on Ryugu, we measure a thermal conduc-
tivity of 0.07 W/mK.
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Figure 1: Thermal conductivity of the UTPS
Tagish Lake analogue material as a function of tem-
perature.

Figure 2 shows the results of the UTPS measure-
ments in comparison to the H, L and C-chondrite
measurements from the literature. Published measure-
ments of k were found for three C chondrites, i.e. the
CM2 Cold Bokkeveld [12], CK4 NWA 5515 [13], and
CV3 Leoville [14]. Figure 2 also shows the three mod-
els of k(¢) extrapolated to the high porosity of UTPS.
The figure also shows estimates of k and ¢ of the
boulder observed by MARA on Ryugu. While all three
models result in similar k between 0.06 and 0.16
W/mK  the estimated porosity varies significantly.
Applying the k, model results in porosities between 28
and 34%, k, results in porosities between 43 and 55%,
and k5 in porosities of 44 to 46 %.

Discussion: The large, model dependent uncertain-
ty of the porosity of the boulder on Ryugu is due to the
lack of thermal conductivity data at high porosities. As
shown in Fig. 2 the models for k(¢) diverge rapidly at
high porosities. The measurement of the UTPS indi-
cates that k,and k5 are more suitable at high porosities
than k,. Thus we estimate the porosity of the observed
boulder on Ryugu to be between 43 and 55%.

The thermal conductivity of the CM seems to agree
with those of the H and L chondrites and is well de-
scribed by the crack-dominated models k, and k.
Microscopic cracks were observed in CM and CI
chondrites which could be the result of dehydration
[15]. Contrarily, the thermal conductivity of the CK
and CV seem to follow a different trend that can be
fitted with the model for partially sintered granular
material where pores between the grains dominate the
reduction of k.
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Figure 2: Thermal conductivity as a function of po-
rosity showing measurements of chondrites, UTPS,
k(¢) models, and the corresponding estimates of the
thermal conductivity and porosity of the boulder ob-

served by MARA.

For Ryugu it remains unknown if cracks or pores
govern k(¢). In order to find a proper model for the
thermal conductivity of chondrites with high porosi-
ties, it is essential to measure the thermal conductivity
of more C chondrites with porosities higher than 30%.
Cl chondrites would be of particular interest as they
seem to be the best representation of Ryugu’s surface
material. With more data at hand and a suitable model
for k(¢) it would be possible to estimate the porosity
of the boulder on Ryugu observed by MARA more
accurately.
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