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Introduction:  The Almahata Sitta (AhS) meteor-

ite is a brecciated, polymict ureilite that has originated 

from the near-earth asteroid 2008 TC3 which is classi-

fied as an F-type asteroid (a group in C complex) in 

spectroscopic taxonomy [1]. Carbonaceous chondritic 

lithologies AhS 671 and 91/91A have been character-

ized and contain phyllosilicates, bruennerite, dolomite, 

magnetite, fayalite, ilmenite, phosphates, pyrrhotite, 

and pentlandite [2]. These lithologies are breccias and 

enclose fragments of ureilitic olivine and pyroxene [2].  

Their bulk oxygen isotopic compositions are unique 

[2], but, interestingly, show relatively close Δ17O 

(Δ17O=1.6-1.8‰) to that of the carbonaceous chon-

drite clast in the Zag meteorite (Δ17O=1.4‰) [3] 

whose abundant  organic matter we have been study-

ing [4,5]. We report C-XANES, FTIR and NanoSIMS 

analyses of AhS 671 and 91A to elucidate the nature of 

their organic matter. 

Methods:  Approximately 1-mm subsamples from 

AhS 671 and 91A were separated for this study. An 

aliquot of each lithology was pressed between two 

KBr plates and IR absorption spectra were obtained 

using a Jasco FT/IR-6100+IRT-5200 at Yokohama 

National University. A 100 nm-thick section from each 

lithology was prepared using a focused ion beam (FIB, 

SMI-4050) at Kochi Institute for Core Sample Re-

search, JAMSTEC. C, N, O-X-ray absorption near-

edge structure (XANES) spectra of the sections were 

obtained using scanning transmission X-ray micro-

scopes (STXM) on beamline 5.3.2.2 at the Advanced 

Light Source, Lawrence Berkeley National Laboratory, 

and BL4U at the UVSOR, Institute for Molecular Sci-

ence. Subsequently, H, C and N isotope images were 

collected using a CAMECA NanoSIMS 50L ion mi-

croprobe at Kochi Institute for Core Sample Research, 

JAMSTEC. 

Results and Discussion:  Fig. 1 shows IR absorp-

tion spectra of AhS 671 and 91A. AhS 671 shows a 

broad band around 3400 cm‒1 with a peak at 3675 cm‒1 

and a peak at 1640 cm‒1. These are characteristic of 

phyllosilicate OH with some adsorbed/interlayer water. 

A Si-O band that has a peak center at 1000 cm‒1 is 

consistent with phyllosilicates. A 1440 cm‒1 peak is 

assigned to carbonates. Phyllosilicates and carbonates 

were not observed in the subsample of AhS 91A, con-

sistent with observed heterogeneity [2]. A features at 

around 1000 cm‒1 is most likely olivine possibly with 

some contribution of  pyroxene. It is consistent with 

the samples being breccias that contain fragments of 

ureilitic olivine and pyroxene [2]. Organic features 

(aliphatic C-H) at around 2900 cm‒1 are barely visible. 
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Fig. 1: FTIR spectra of Almahata Sitta 671 and 91A. 
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Fig 2: (A) STXM C-map of the FIB section of Alma-

hata Sitta 671. (B) C-XANES spectra of the selected 

regions in the C-map. 
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Fig. 3: STXM elemental map of the FIB section of 

Almahata Sitta 671. C in red, O in green, and Fe in 

blue.  

 

STXM/C-XANES results are shown in Fig. 2. We 

only present the results for AhS 671 since the FIB sec-

tion of 91A did not contain detectable carbon. The C-

map of AhS 671 (Fig. 2A) shows that sub-micrometer 

organic matter is finely mixed with matrix. There is 

some sub-micrometer sized condensed organic matter 

(highlighted by red and blue in Fig. 2A). The C-map 

combined with Fe- and O-maps in RGB (Fig. 3) indi-

cates that organic matter is scattered in Fe-rich regions 

(perhaps Fe-rich phyllosilicates?). C-XANES spectra 

of the organic-rich regions show large peaks at 285 eV 

assigned to aromatic carbon. The diffused organic re-

gions (green and orange in Fig. 2) have small features 

at 297.5 eV and 288.7 eV that are assigned to aliphatic 

carbon and carboxyl/ester, respectively, but these fea-

ture are not observed in condensed organic matter (red 

and blue in Fig. 2). In N-XANES, a tiny peak at 401.3 

eV, possibly assigned to N-C structure, is observed in 

the diffused organic regions. Although, organic matter 

in AS 671 is highly aromatic, there is no 1s-σ* exciton 

peak at 291.7 eV of graphene structures that is charac-

teristic of thermally-metamorphosed meteorites [6]. 

Such characteristics are similar to the C-rich aggregate 

in the Zag clast [4]. The only difference of their organ-

ic matter is related to morphology; Zag organics form 

large (over 10 μm) aggregates while those in AhS 671 

are smaller and mixed with the matrix at the submicron 

scale. 

NanoSIMS isotope images are shown in Fig. 4. 

δ13C and δ15N in C-rich areas are homogeneous with 

averages of +3 ± 3 ‰ and +234 ± 32 ‰, respectively. 

The δ15N value is close to the value of insoluble organ-

ic matter (IOM) of CR chondrites [7], and much less 

than the C-rich aggregate in the Zag clast [4]. The δD 

value in C-rich areas is +988 ± 59 ‰. It is similar to 

the value of IOM of CI and CM chondrites [7], but less 

than the value of CRs [7] and the C-rich aggregate in 

the Zag clast [4]. Downes and coworkers [8] reported 

C and N isotopic compositions (δ13C of ‒7.3 to 

+0.4 ‰; δ15N of ‒53 to ‒94 ‰) in ureilitic fragments 

of the Almahata Sitta. Our result for δ13C is broadly 

consistent but not for δ15N. The N isotopes of organic 

matter in AhS 671 shows an isotopically heavier com-

ponent, which are consistent with  different origins for 

organic matter in AhS 671 and the ureilitic fragments 

of the Almahata Sitta. 

Considering the molecular structure and the nitro-

gen isotope composition, we hypothesize that the or-

ganic matter in AhS 671 experienced similar processes 

to the C-rich aggregate in the Zag clast, but originated 

from different organic precursors.  
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Fig. 4: NanoSIMS images. (A) Secondary electron 

image, (B) 12C image, (C) δ15N image, and (D) δ13C 

image.  
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