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Introduction: The Discovery-class Psyche mission
to the M-class asteroid (16) Psyche will be the first
exploration of a metal-rich body and will further our
understanding of the cores of igneous bodies [1]. The
payload includes a neutron spectrometer (NS) com-
posed of several sensors, each targeted to a different
energy range of Psyche’s neutron emission spectrum.

Neutron spectrometers have been successfully used
to measure compositional parameters at rocky and icy
worlds [2, 3]; however, important differences in the
neutron spectrum are expected at Psyche. Compared to
previously explored bodies, there will be an enhanced
fast and a suppressed thermal neutron flux. Additional-
ly, the flux and spectral shape of the epithermal neu-
trons carry important compositional information.
These differences raise the question: Are the baseline
sensors of the Psyche NS, which are based on heritage
instruments, optimized for Psyche’s unique neutron
environment? This question motivated an evolution of
the Psyche NS from a two-sensor to a three-sensor
design that can best exploit the unique properties of
Psyche’s neutron spectrum [4].

Planetary Neutron Spectroscopy: For planetary
bodies with little to no atmosphere, spallation reactions
induced by galactic cosmic rays (GCRs) in the subsur-
face produce copious high-energy free neutrons. These
neutrons then undergo nuclear interactions before es-
caping the body or being absorbed in the surrounding
material.

Neutrons that escape with few interaction are
termed fast neutrons and have energies >0.5 MeV.
Other neutrons will scatter many times and come into
thermal equilibrium with the surface before escaping.
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Fig. 1. Neutron spectral variations (displayed as lethargy,
or flux times energy) for various metal fractions. The ener-
gy sensitivity bars of some neutron sensors are also shown.
See Fig. 2 for their definition.

These are thermal neutrons, which have energies <0.5
eV.

Between fast and thermal neutrons are the epither-
mal neutrons whose overall flux and spectral shape
contain compositional information. The epithermal
neutrons can be divided into low-energy epithermals
(henceforth denoted as epithermals) and high-energy
epithermals (HEE) with the division around 500 eV.
Figure 1 shows several neutron spectra with varying
metal fractions. Clearly the amplitude and shape of the
spectral features vary with composition.

Baseline Psyche NS Sensors: At the start of Psy-
che’s Phase B, the NS consisted of two low-energy
neutron sensors for measuring thermal and epithermal
neutrons. Fast neutron measurements are made with
the gamma-ray spectrometer (GRS) anti-coincidence
(AC) shield. The AC shield also gives a crude meas-
urement of HEE from uncorrelated neutron captures.
This measurement is termed the “AC shield singles.”

For the lowest energy neutrons, *He gas propor-
tional counters (GPCs) were chosen based on heritage
from the Lunar Prospector NS [5]. Because GPCs have
sensitivity to both thermal and epithermal neutrons,
one sensor is covered with a thermal-neutron-
absorbing Cd wrap leaving it sensitive only to epi-
thermal neutrons. The other sensor has no wrap, and
the thermal neutron measurement is derived from the
difference in the count rates of the two sensors.

The AC shield is a cup-shaped volume of boron-
loaded plastic scintillator, whose primary purpose is to
veto GCR events from the GRS-measured gamma-ray
spectrum. The AC shield’s fast neutron mode looks for
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Fig. 2. Sensor effective areas for three GPCs and the AC
shield singles measurement. The singles curve was taken
from [6] and scaled to the size of Psyche’s AC shield. The
sensitivity bars correspond to the range where the effective
area is >10 cm?.
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time correlated events within a set coincidence win-
dow. The first event comes from a fast neutron scatter-
ing off a proton in the scintillator, and the second
comes from a neutron capture on *°B. This is the same
approach used for fast neutron measurements by Lunar
Prospector [5] and MESSENGER [7].

Relevant Compositions for Psyche: Remote ob-
servations of Psyche indicate a predominately metal
body (Fe and Ni) with some silicates [8]. The amount
of silicates and the Ni fraction of the metal phase are
important parameters for distinguishing between dif-
ferent formation hypotheses [1]. Remote sensing data
also indicate the presence of water and/or hydrated
minerals [9].

To determine the variety of neutron spectra that the
NS might measure, we complied a set of compositions
that envelope the possibilities indicated from remote
sensing data. These compositions were input into a
Geant4 [10] simulation and neutron spectra were pro-
duced by simulating GCR events. Figures 1 and 3
show spectra for variations in metal fraction, Ni, and H
content. From the plots it is clear that there are large
variations in the thermal, HEE, and fast neutrons re-
gions. Furthermore, calculations of the expected count
rates during orbital operations show that these regions
have significant variability, while the epithermal
measurement is nearly devoid of compositional varia-
tion. From these observations the Psyche NS should
target the thermal, HEE, and fast neutron bands. Note
however, that the epithermal channel is still required to
derive the thermal measurement.
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Fig. 3. (top) Neutron spectra for different Ni fractions in a
90% metal, 10% silicate reference Psyche. (bottom) Spec-
tra for different H concentrations in 90% metal (8% Ni),
10% silicates.

Psyche NS Design Trades: The baseline Psyche
NS, with the AC shield, was well suited to the meas-
urement of thermal, epithermal, and fast neutrons.
However, given the possibilities for the composition of
Psyche, a measurement of the HEE neutrons would
add important information to the NS investigation.

Two possibilities for a HEE sensor are the AC
shield (using the singles measurement) and a polyeth-
ylene-wrapped GPC. The effective areas of these sen-
sors are shown in Fig. 2.

As shown in Fig. 4, the AC shield singles events
have poor resolution and a small signal-to-background
ratio. The poor resolution is due to the complicated
light transport in the AC shield [6], and the poor sig-
nal-to-background results from a large GCR and gam-
ma-ray-produced continuum.

While GPCs have no sensitivity to HEE, by using a
neutron moderating material, like polyethylene, around
the GPC, the sensitivity to HEE can be raised. This
provides an acceptable detection efficiency with supe-
rior signal-to-background. The better performance re-
sults from the relatively high resolution of the GPC
and its insensitivity to other forms of radiation.

Based on the expected neutron environment and the
superior performance of a GPC, the Psyche project
decided to add to a polyethylene-wrapped GPC to the
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Fig. 4. The spectra for AC shield singles (green) and a
GPC (purple). The background continuum is plotted with a
lighter tint. These spectra have been scaled and shifted to
place them on the same horizontal scale. Each spectra con-
tains the same number of neutron captures.

NS [4]. The three GPCs of the NS and AC shield are
sensitive to the full energy range of neutrons which
enables a robust measurement of the Psyche-
originating neutron flux.
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