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Introduction:  We present a new approach to the 

interpretation of infrared fluxes of airless body. Our 
technique combines supervised machine learning and 
Bayesian inversion to determine the surface proper-
ties, including rock abundance, and to infer the ther-
mal inertia of the rocks and the regolith separately. 
We train a neural network representation of the ther-
mophysical behavior of the asteroid, and we employ 
this in a Bayesian inference of observed infrared 
fluxes. We validate the method by inverting simulat-
ed infrared fluxes of asteroid (101195) Bennu as ob-
served by NASA’s OSIRIS-REx mission [1], and 
then we also invert infrared observations of (25143) 
Itokawa. On Itokawa, we retrieve a rock abundance 
of ~85% for pebbles larger than the diurnal skin 
depth (~2cm). The conductivity of the rock is found 
to be lower that their meteoritic analog (the LL 
chondrites), possibly indicating that the pebbles 
could be fractured. Cracks in rocks can be modeled 
as pores of very flat shape, and thermal conductivity 
in meteoritic samples is found to decrease as porosity 
increases [2]. This is relevant to the interpretation of 
future infrared observations of (101195) Bennu by O-
REx and (162173) Ryugu by JAXA’s Hayabusa 2 
[3]. Given the small size of the targets and their high 
rock abundance, differences in thermal inertia could 
be representative of more or less fractured rocks, ra-
ther than indicating the presence of regolith material 
(i.e., pebbles with size smaller than the diurnal skin 
depth).  

Scientific rationale:  Theoretical studies and re-
mote sensing of the surface of airless bodies are cru-
cial to understand their geology, composition, for-
mation and evolution ([4] and references therein). All 
the asteroid observed so far show a combination of 
rocks and regolith, the latter produced by the evolu-
tion of the former via micrometeoroid impacts and 
thermal fatigue processes (e.g., [5]). Knowledge of 
temperatures and determination of thermal inertia of 
rock and regolith, and relative rock abundance, are 
key in estimating the “sampleability” of the surface, 
because they define the thermal and mechanical envi-
ronment and inform about the average grain size. 

Why machine learning? A powerful technique is 
to infer the surface properties from infrared fluxes 
emitted in response to the changing diurnal insola-
tion. On asteroids, however, thermal inertia of rock 
and regolith, and rock abundance, have been never 
measured from infrared fluxes. State-of-the-art tech-

niques involve the use of look-up tables which are 
populated by thermophysical simulations, and the 
matching between the observed flux and its nearest-
neighbor flux in the table, e.g., via chi-2 minimiza-
tion. However, this method is likely to fail if the di-
mensionality of the parameter space (number of sur-
face properties) is enhanced, e.g., we want to split the 
contribution to rock and regolith to thermal inertia. A 
rough sampling of the parameter space is already 
computational expensive (thermophysical models 
may require up to 30 minutes in CPU hours to run), 
and it does not have enough resolution to rule out 
local minima and saddle points of the objective func-
tion (e.g., the chi-2 loss function). Populating a look-
up table is therefore misplaced effort, unless the sim-
ulations can used to generalize the functional rela-
tionship between input (surface properties) and out-
put (infrared flux). We propose to use the simulations 
in a look-up table to train, validated and test a neural 
network representation of the thermophysical model. 
As opposed to the parent model, this tool – once 
trained – is a fast predictor (~ seconds) which can be 
effectively employed to sample the posterior distribu-
tion of the surface properties by means of more ad-
vanced statistical techniques, such as Bayesian inver-
sion aided with Markov Chain Monte Carlo integra-
tion of the evidence. 

Methodology. 1) We use a TPM thermophysical 
model (e.g., the TPM code [6]) to generate infrared 
fluxes corresponding to different combinations of 
surface properties and illumination conditions. We 
assume that the surface has regolith and rock, with 
two distinct values of thermal inertia. The fluxes rela-
tive to the two components are linearly combined by 
means of the rock abundance. We split the dataset in 
a training set (70%), a validation set (15%) and a 
testing set (15%). 2) We choose a neural network 
architecture and train it to associate surface proper-
ties (e.g., surface roughness, thermal inertia regolith 
and rock, rock abundance) to an infrared flux. We 
use the validation set for hyperparameter optimiza-
tion, and we test the best-validation scheme on the 
unseen data of the testing set. The performance of the 
network is assessed in terms of the mean square error 
between prediction and target, and regression accura-
cy. We find that a 2-layer network (with 10 neurons 
in the hidden layer) is a good choice for this applica-
tion. 3) We blind-test the trained network by simula-
tion validation, i.e., inverting simulated infrared flux-
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es whose corresponding surface properties are 
known. 4) We use the network to sample from the 
(unknown) posterior distribution of the surface prop-
erties, via Bayesian inversion of observed infrared 
fluxes. We refer to the full manuscript [7], and refer-
ences therein, for a more detailed explanation of the 
method. 

Model validation: (101195) Bennu. We perform 
the blind test on simulated infrared flux of asteroid 
(101195) Bennu as observed by the O-REx Thermal 
Emission Spectrometer (OTES, [8]) during the de-
tailed survey [1]. The Bayesian inversion uses un-
informative prior distributions of the surface proper-
ties – that is, we do not assume any prior knowledge. 
The inversion is successful, because the reference 
values (34◦; 50 SIU; 850 SIU; 30%) of the parameters 
belong to the posterior distributions (Figure 1). 

(25143) Itokawa. We apply the validated method 
to the inversion of observed infrared fluxes of aster-
oid (25143) Itokawa [9]. The inference of the surface 
properties of Itokawa – namely, surface roughness, 
rock abundance, thermal inertia of regolith and rock 
components – is supported by prior information, such 
as lower/upper limit on the thermal inertia of the reg-
olith and rock derived from assumption of homogene-
ity for the regolith. The resulting posterior distribu-
tions are in Figure 2. The surface is confirmed to be 
rocky at the diurnal skin depth level, and the pebbles 
have low thermal inertia (with respect to their mete-
oritic analog, the LL chondrites, [2]), which could 
indicate that they are fractured. The average thermal 
inertia of the surface is around 750 SIU, consistently 
with previous studies [9]. Finally, we use the empiri-
cal relationship by [10] to convert the thermal con-
ductivity of the regolith to an average grain size of 
about 10 mm, consistently with previous studies [11]. 

Potentialities and future work. We foresee the 
use of the proposed methodology to forthcoming in-
frared data of (101955) Bennu and (162173) Ryugu, 
whose rock abundance can be accurately inferred 
given the availability of nightside observations. The 
concept of thermal surrogate model, however, is 
broader and can be used to inform about surface 
sampleability also on the Moon, Mars, comets and 
icy satellites (e.g., NASA’s Clipper), provided the 
availability of infrared data – and accurate “parent” 
thermal models. 
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Figure 1. Posterior distributions of the surface ther-
mal properties from simulated disk-integrated fluxes 
of (101955) Bennu. The dashed curves are solutions 
when only the daytime observations are processed. 
The solid curves are solutions when all the observa-
tions are processed. In both cases, the reference val-
ues (34◦; 50 SIU; 850 SIU; 30%) of the parameters 
(vertical lines) belong to the posterior distributions.   

Figure 2. Solution for (25143) Itokawa. The surface 
is found to be rocky and the pebbles have low con-
ductivity; they could be highly fractured. 

1284.pdf50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132)


