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Introduction

In recent years, the canonical picture of the most widely-
accepted scenario of the Moon’s formation (the giant impact
theory) has become complicated due to recent high-precision
measurement of isotope ratios for oxygen and other elements
in lunar samples. The measurements suggest that the bulk iso-
tope ratios for the Moon are essentially identical to those of
the Earth (e.g. Zhanget al. 2012). This is a problem for the
“classic” scenario in which the Moon is formed by the oblique
impact of a Mars-mass body with the proto-Earth and subse-
quent accretion from a post-impact disk surrounding the Earth.
The classic picture suggests that the Moon is primarily made
of impactor material. Generating near-identical isotope ratios
by this sequence of events would require a presumably un-
likely near-identical isotopic composition of the impactor and
proto-Earth.

Thus, new models have been proposed that may overcome
this difficulty. In particular,Ćuk and Stewart (2012) proposed
a model in which the proto-Earth is rapidly spinning and struck
by a relatively low-mass impactor, forming a hot, rapidly rotat-
ing structure in which convection allows effective mixing and
homogenization of isotope ratios for the subsequently formed
Moon. The type of post-impact structure has been dubbed a
“synestia” by Lock et al. (2017, 2018).

The Self-Consistent Field method

The work described here is part of a larger effort to validate
formation models via high resolution simulations the Moon-
forming impact with a state-of-the-art hydrodynamics code.
While such a calculation is the best method available for de-
scribing the impact and its immediate aftermath, it is limited
to modeling a time period of hours to several days after the
impact. Studying the longer-term evolution of the Earth-Moon
system will require a different method that sacrifices some of
the dynamical details of the system in order to model quasi-
steady-state long-term development. We have been working on
applying the so-called Self-Consistent Field (SCF) method in
order to generate post-impact configurations. The SCF method
has a long pedigree in astrophysics stretching back to the 1960s,
having been applied to modeling self-gravitating bodies with
significant angular momentum (Tassoul 1979). In particular it
is applicable to the “in-between” situation where objects nei-
ther rotate slowly enough to be considered quasi-spherical, or
so fast as to be approximated by thin disks (as in accretion disk
theory).

Use of the method requires the assumption of a config-
uration in which 1) the rotation rateΩ is a function of the
cylindrical radiusr and the concomitant assumption that the
pressureP and densityρ can be related byP = P(ρ), i.e. that
the configuration is barotropic (even if the underlying equation
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Figure 1: Mass-potential relation for cold-curve EOS with
parameters as indicated. Successive curves from bottom up
indicate values ofK′ = 108, 109, 1010, 1011, 1012, 1013.
Blue curves (forK′ = 109, 1010, 1011) indicate low-density
branches of enthalpy curves that have double positive-slope
regions. The horizontal dashed lines indicate one lunar mass
(7.4×1025 gm)) and one Earth mass 6.4×1027 gm).

of state (EOS) is more general (i.e.P = P(ρ,T )). (For ex-
ample, if the configuration is isentropic, or more generally, the
temperatureT also happens to be a function ofρ in the object.)
If these assumptions hold, then the gravitational potential can
be algebraically related to the enthalpyH =

∫

dP/ρ = H(ρ)
and the configuration structure can be calculated by an iterative
procedure involving the solution of the Poisson equation for
successive iterations of the object’s density structureρ(r,z).
Such a method was developed in the 1960s and has been ap-
plied to idealized configurations (e.g. rapidly rotating poly-
tropes) and models of rapidly rotating stars. We developed a
program for SCF calculations and have tested it successfully
on configurations such as rotating polytropes (cf. James 1964).

Isentropes and enthalpies for non-ideal gases

For post-Moon-forming impact models, an additional require-
ment is a realistic equation of state, such as the tabular SESAME
EOS, or the semi-analytic ANEOS (Melosh 2007). We ac-
quired the ANEOS routines and input files for materials of
interest, such as SiO2 and dunite, and have generated enthalpy
tablesH(ρ) for (e.g.) isentropes.

The enthalpyH is written asE + PV and for isentropes
is equivalent toH =

∫

dP/ρ. For substances of interestP(ρ)
and its differentialdP(ρ) can be negative in certain parameter
regimes, typically at low temperatures and pressures (which
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may or may not be of physical interest). The negative portions
can in turn generate entropies that are non-monotonic functions
of ρ for some values of entropyS. These regions of parameter
space are not suitable for modeling, but portions of the enthalpy
curve can be used to make either low- or high-density models
over a more limited range ofρ.

To understand the properties of configurations composed
of non-ideal materials (e.g. SiO2 or H2O), we have temporarily
stepped back to investigate non-rotating (spherical) configura-
tions. We integrate Poisson’s equation in spherical symmetry
with the link between density and potential provided by the
enthalpyH(ρ) = −(Φ + Φ0), whereΦ0 is a constant of in-
tegration that sets the mass of the configuration, yielding a
second-order non-linear ordinary differential equation for the
potentialΦ(r)

1
r2

d
dr

(

r2 dΦ
dr

)

= 4πGρ(Φ). (1)
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Figure 2: Mass-potential relations for ANEOS SiO2 with dif-
ferent values of entropy. Successive curves indicate entropy
values ofS = 4× 1011, 5× 1011, 6× 1011, 7× 1011, 8×

1011, 9× 1011, 1.0× 1012, 1.2× 1012, 1.5× 1012, 2.0×

1012, 2.5× 1012 erg gm−1. As in Fig. 1, Blue curves (for
K′ = 4× 1011, 5× 1011, 6× 1011 erg gm−1) indicate low-
density branches of enthalpy curves that have double positive-
slope regions. The horizontal dashed lines indicate one lunar
mass and one Earth mass.

Analytic “Cold Curve” EOS

ANEOS is something of a “black box”, and we have found it
helpful to also work with an analytic approximated equation

of state based on the discussion in Melosh’s 2007 paper. This
“cold curve” EOS is given by

P = PT +Pc = (γ −1)ρe+K(ηn
−ηm), η = ρ/ρ0 (2)

wheren > m so thatPc → 0 asρ → 0. Using the first law of
thermodynamicsde + PdV = 0 (with V = 1/ρ) we can solve
for the energy along an adiabat

e =
K
ρ0

[

ηn−1

n− γ
−

ηm−1

m− γ

]

+K′ργ−1, (3)

whereK′ is a constant of integration labeling the entropy. The
corresponding enthalpyH = e+PV is

H = e+
P
ρ

=
K
ρ0

[

nηn−1

n− γ
−

mηm−1

m− γ

]

+ γK′ργ−1. (4)

Integration of spherical models

Integration is performed by setting the initial conditionΦ = Φ0
at r = 0 and integrating eqn 1 outwards to the pointR where
Φ = 0. Figure 1 shows the run of mass versus central potential
for successive values of thermal parameterK′. Figure 2 shows
the runs of mass vs. central potential for ANEOS SiO2 config-
urations. An ideal gas (P = K′ργ ) has power-law (polytropic)

behavior forM(Φ0) ∝ Φ(3γ−4)/2(γ−1)
0 so the non-power-law

and non-monotonicity for both EOSes show the effects of non-
ideal-gas material. For example, non-monotonic curves of
H(ρ) give rise to low-density (and thus low-mass) branches of
the mass-potential curves as indicated in Figs 1 and 2. Curves
for whichM is a decreasing function ofΦ0 (equivalent ton > 3
polytropes) indicate potentially dynamically unstable configu-
rations.
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