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Introduction: The Bus-DeMeo (B-DM) asteroid 

taxonomy [1,2] has revolutionized our ability to organ-

ize asteroid populations by making it possible to group 

similar objects together. This classification was initial-

ly based on slope values and principal component 

scores that were computed for the Small Main-belt 

Asteroid Spectroscopic Survey (SMASSII). There are 

26 main classes defined on the basis of specific fea-

tures. Since B-DM was developed, several enhance-

ments have been added. It has also become apparent 

that visual inspection of data is often necessary for 

correct classification, even though this introduces sub-

jective judgments into the process. 

In this project, we apply more modern machine 

learning classification algorithms to the task of asteroid 

taxonomy using two common machine learning (ML) 

classification tools: logistic regression and k-nearest 

neighbors (k-NN), with a goal of developing a modern 

classification algorithm that does not require human 

intervention. 

Data: We obtained a total of 686 asteroid spectra 

from several research groups (see Acknowledgments) 

including the 371 spectra used in the original classifi-

cation papers [1,2]. Data from all sources were 

resampled in 0.05 µm steps over a range from 0.45 to 

2.5 µm. We then used a batch version of the B-DM 

Taxonomy Classification Web tool from Stephen Sliv-

an (http://smass.mit.edu/busdemeoclass.html) to deter-

mine the B-DM class for each of the spectra obtained 

from non-MIT sources. 

One limitation of our methods (and the original 

taxonomy) is the varying number of spectra per class 

(Figure 1). In this project, we dropped the classes with 

fewer than 4 representatives because the ML methods 

do not do well with so few examples for training. 

Data Analysis: Data analysis was undertaken using 

an in-house tool written in Python and utilizing the 

SciKit-learn library [3]. We used two types of classifi-

cation algorithms. Logistic regression (LR) is a classi-

cal technique that predicts the probability that an input 

value belongs to a particular class. Like linear regres-

sion, it is a parametric linear model that estimates coef-

ficients for each dimension of the input; however, its 

prediction is a categorical class label instead of a real 

number. K-nearest neighbor (kNN) classification is a 

non-parametric technique used to classify new samples 

based on their similarity to samples in known classes 

from a training data set. The parameter k controls how 

many samples are used to predict the label of a new 

sample. The class is assigned on the basis of the most 

common class of the k-nearest neighbors. 

Results: First, we determined if the ML methods 

could accurately predict the Bus-DeMeo classes with 

>4 examples. Results are shown in Table 1, along with 

the average accuracy of each method and the classes to 

which wrong matches were assigned. Second, we tested 

that classifier by applying it to the two groups of aster-

oid spectra we obtained from colleagues and a suite of 

meteorite spectra obtained from RELAB [4]. 

Discussion: With 67% and 78% overall classifica-

tion accuracy, respectively, the LR and kNN methods 

did a remarkably good job of classification, though 

with slightly different results. A majority of mismatch-

es inTable 1 occurred when matching to asteroids in 

similar classes with very subtle distinctions. However, 

there is no evidence that many of the B-DM classes are 

mineralogically distinct. Nor is there any way to test 

the robustness of the B-DM taxonomy without sample 

return from each object. It is possible that some of the 

subdivisions in the B-DM taxonomy are statistically 

unsupported, and that a more simplified taxonomy 

might be more appropriate. In the long run, the optimal 

asteroid taxonomy would be tied directly to the meteor-

ite classes that are (to at least some extent) derived 

from them, to allow the underlying mineralogical bases 

for the differences among classes to be understood. 

The ability to predict B-DM classes further de-

grades when applying ML models trained on the origi-

Figure 1. Distribution of 371 objects used in the original 

Bus-DeMeo taxonomy [1,2]. Orange bars represent classes 

with too few examples for subsequent training. 
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nal B-DM asteroids to other data sets (Table 2). How-

ever, applying any classifier to “unseen data” in this 

manner is rife with problems, particularly the assump-

tion that the test data are drawn from the same popula-

tion. Fortunately, this scenario has been studied in ML, 

using techniques such as calibration transfer to align 

datasets from different instruments [5,6]. Pre-

processing methods such as better baseline removal, 

normalization, squashing and smoothing are also likely 

to improve matching accuracy, as shown with other 

types of spectroscopy [7,8]. This is a problem in need 

of rigorous exploration using a full array of ML tools. 

Summary: This project assesses how well objec-

tive, principled ML methods approximate the results of 

the B-DM taxonomy. It is clear that they have great 

potential to do so. The automated methods have the 

advantage of being objective, easy to run, and lacking 

any need for human visual inspection. They also have 

the potential to objectively match any other independ-

ent classification scheme. Asteroid taxonomy can be 

greatly improved by using the growing number of new 

observations, linking to meteorite spectra with known 

mineralogies, and leveraging ML methods. 
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Table 1. B-DM Classification with ML Methods 

Class 

Logistic 

Regression 

k-Nearest  

Neighbors 

A Mistakes A Mistakes 

A 100  100  

B 100  100  

C 100  100  

Cgh 70 Ch(2), S(1) 90 Ch(1) 

Ch 100  94 Xk(1) 

D 100  100  

K 87.5 S(1), L(1) 94 Xk(1) 

L 100  91 S(2) 

Q 100  100  

S 96 
L(1), Sw(2), 

Sqw(1) 
98 Sr(1), Sq(1) 

Sq 35 S(10), Xk(1) 71 S(3), K(1), Q(1) 

Sqw 58 S(2), Sw(3) 92 Sw(1) 

Sr 25 S(12) 69 S(5) 

Srw 17 S(4), Sw(1) 33 Sw(4) 

Sw 66 S(14) 95 Sqw(1), S(1) 

T 0 Xk(3), L(1) 100  

V 100  100  

X 0 Xk(4) 75 Xk(1) 

Xe 
43 

Xk(2), S(1), 

L(1) 
57 Xk(2), Ch(1) 

Xk 83 S(2), Ch(1) 89 T(1), Cgh(1) 

Class = B-DM class, A = % accuracy, Mistakes = assigned 

misclassifications. 

Table 2. Accuracy When Applying B-DM LR Classifier to Other Datasets 

Class 
Near-Earth Asteroids HARTSS RELAB Meteorites 

A Mistakes A Mistakes A Mistakes 

A 100    50 C(1) 

B 60 C(2) 67 S(1) 55 
Ch(20), Cgh(3), K(7), C(2), V(2), 

S(6), Sq(4), Q(2), Sr(1) 

C 44 Ch(3), B(1), Xk(1)     

Cgh       

Ch 0 C(1)     

D 75 C(1)     

K       

L 37.5 S(1), C(2), Sw(1), Xk(1)     

Q 46 Sq(10), Cgh(1), S(4)   46 
S(13), B(23), Sq(38), C(3), Ch(9), 

Xk(1) 

S 77 
Sq(2), Sw(2), K(1), B(1), 

Sr(1), Cgh(1) 
40 Sr(1), K(1), L(1) 73 L(23), Q(1) 

Sq 9 Q(1), S(16), Sr(2), Sw(1) 0 S(1) 4 B(7), S(68), Q(1), Ch(4), Xk(1) 

Sqw 17 Sw(1), Sr(1), Sq(2), S(1) 0 Sw(2)   

Sr 11 S(8)   0 S(32), Q(13), Sq(3), B(1) 

Srw 0 S(2), Sw(1) 0 Sr(2), S(1), Sw(1) 33 Sr(1), D(1) 

Sw 53 S(6), Sqw(1) 44 S(3), D(1), L(1) 75 A(1), L(1) 

T     0 Xk(1), C(1) 

V 91 Q(1) 100  91 B(10), Q(7), Sq(2), S(2) 

X 0 Xk(5), C(2), Xe(1)     

Xe 0 L(2)     

Xk 0 Cgh(1), Ch(1), S(2)     
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