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Introduction: X-ray fluorescence spectroscopy is 

an established technique for geochemical analysis. Re-

cently, portable x-ray fluorescence (pXRF) spectrome-

ters have been developed for use by field geologists, 

and hailed for their short run times and low cost [1,2]. 

Although the technology for data acquisition is fairly 

well-developed, calibrations for producing quantitative 

data are not yet well-tested. 

The accuracy of univariate XRF analysis can be 

improved by matrix matching, which uses standards 

with the same rock type when creating calibrations for 

an unknown [2]. Previous work indicates that multivar-

iate (MV) calibrations using machine learning can be 

useful in predicting elemental concentrations, but do 

not match the performance of traditional univariate 

calibrations [3]. Here, we test whether matrix-matched 

MV calibrations, in which unknowns are predicted 

using models trained on similar samples, can improve 

MVA performance accuracy.  

Samples and Methods: Spectra were acquired 

with the Olympus Innov-X DELTA Premium on 2992 

pressed pellets from rock powder standards of the 

Mount Holyoke College Mineral Spectroscopy Lab [4]. 

Of this collection, 484 pellets were made from different 

rock powders doped with specific concentrations of 

trace elements ranging from 10 ppm to 10 wt.%. All 

samples were prepared as pressed-powder pellets and 

analyzed in 2-Beam Geochem mode at 120 s per beam, 

resulting in 5882 total spectra.  

Multivariate Analysis: Custom lab website Project 

Superman (nemo.cs.umass.edu:54321) was used to 

build MV calibrations relating channel intensities to 

concentratio, for 12 trace elements: Cr, Mn, Ni, Cu, 

Zn, Rb, Sr, Zr, Mo, Ce, La, and Pb. The accuracy of 

each calibration was evaluated with leave-one-out cross 

validation (LOO-CV), which iteratively treats one 

sample as an ‘unknown’ and creates a regression from 

the remaining ones. The difference between the true 

and model-predicted values of the ‘unknown’ sample 

are calculated for each iteration and then averaged. 

Root-mean-square errors (RMSE) of the overall sample 

suite are used as a basis of comparison. MV regres-

sions used only that portion of the spectrum surround-

ing the appropriate emission line for each element of 

interest (EOI), as determined by [3]. 

Models for quantification of each element were 

created using a variety of standard sample suites. “All” 

models used all 2992 standards. “All Doped” used all 

standards doped with each EOI. Other matrix-specific 

models separated doped standards by their seven geo-

chemically distinct matrices [4]. For each of these 

sample suites, partial-least squares (PLS) and least-

absolute shrinkage and selection operator (lasso) mod-

els were trained using data for both beams on the In-

nov-X (1 and 2). PLS models used the number of com-

ponents (1-30) with the best performance [5]. Lasso 

models were trained with the number of folds selected 

based on the minimum for each model [6].  

All calibrations were then repeated after removing 

samples with unnaturally high (doped) concentrations 

of the EOI, so as to only use samples with concentra-

tions found in natural geologic materials. These con-

centration ranges were determined by calculating the 

EOI’s average concentration in un-doped natural rock 

samples and choosing range boundaries two standard 

Figure 1. Normalized %RMSE values organized by matrix. 

Each grouping uses the lowest %RMSE ratio (Table 1).  

Figure 2. Elemental RMSE results. Values represent the 

best result from all the calibrations in that matrix (Table 1). 

Dashed lines at top represent values >> graph range. 
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Figure 3. Beam error comparison. Points lying off of the 

1:1 center line indicate beam preference.  

deviations above and below the average value. Overall, 

each EOI had 6-9 different sample suites and 8 calibra-

tions were created per sample suite.  

Results and Discussion: In terms of RMSE (Table 

1), 60% of matrix-matched calibrations yielded lower 

values (green cells) than their non-matrix matched 

counterparts (“All” column); pink cells indicate higher 

(worse) RMSEs. But contextualized %RSME values 

that relate errors to that sample set’s average concen-

tration indicate that MV calibrations were improved 

with matrix matching in all but three cases. Moreover, 

the new matrix-matched RMSE values now yield com-

parable or superior performance to our prior univariate 

analyses [7] as seen in the third column (“Univ.”). 

Figure 1 shows that the accuracy of XRF predic-

tions varies dramatically by matrix. The fact that sea 

sand, which is nearly pure SiO2, has comparable errors 

to the other matrices indicates that accuracy variations 

are not as affected by matrix-peak overlap as initially 

suspected. Figure 2 further shows that no particular 

matrix gives superior results for each of the elements 

studied. Figure 3 demonstrates that choice of beam (an 

instrument setting) does not particularly affect predic-

tion accuracy, even with varying Z.  

Summary: This project shows that MV methods 

have great potential for providing more accurate XRF 

calibrations than conventional univariate analyses. This 

area is worthy of future exploration. 
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 Table 1. Best RMSE Results from MV Modeling of Varying Standard Sample Suites 

# samples 2941 Univ. 44-71 5-17 5-17 5-17 5-17 5-17 5-17 5-17 

ppm All [7] All Doped Holyoke Idaho Mexico SSand Maine Hawaii Ultramafic 

Cr 251.0 1527 218.5 300.9 61.9 47.3 104.0 157.1  394.1 

Mn 261.2 549 575.1 99.9 245.6 32.7 62.5 62.3  385.6 

Ni 142.3 235 478.5 64.8 106.9 27.5 48.2 492.2  283.0 

Cu 93.1 154 83.7 82.7 65.2 42.1 45.3    

Zn 152.4 260 864.6 417.1 1093.4 76.3 112.3 855.1  248.7 

Rb 30.4 267 76.7 71.9 99.9 25.3 64.3  8.8  

Sr 104.9 237 74.4 82.4 57.0 28.0 81.8  36.0  

Zr 89.5 261 53.6 11.7 87.2 5381.1 47.2   7.9 

Mo 24.7 292 80.0 45.7 95.4 38.6 29.3    

La 52.4 764 46.8 137.4 55.8 47.1 106.7  75.1  

Ce 58.0 286 64.2 15.6 58.1 42.9 42.9  33.4 37.0 

Pb 53.0 152 89.7 35.7 107.3 69.2 10.9  5.1  

Cr 121%  88% 128% 8% 23% 15% 31%  97% 

Mn 27%  41% 4% 10% 4% 14% 9%  15% 

Ni 79%  35% 6% 9% 16% 3% 8%  9% 

Cu 200%  25% 3% 23% 14% 19%    

Zn 138%  30% 5% 18% 39% 10% 6%  14% 

Rb 39%  34% 4% 34% 33% 13%  29%  

Sr 41%  21% 9% 18% 12% 35%  9%  

Zr 50%  16% 4% 24% 79% 11%   3% 

Mo 147%  18% 19% 56% 16% 13%    

La 155%  21% 9% 27% 20% 38%  3%  

Ce 81%  23% 5% 22% 15% 15%  12% 17% 

Pb 294%  40% 17% 60% 24% 5%  2%  
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