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Introduction:  The observed abundances of the 

highly siderophile elements (HSEs, means “iron lov-

ing”) are greatly enhanced relative to their predicted 

quantities in the silicate mantles of Mars [1]. One theory 

invoked to explain this discrepancy is that the HSEs 

were delivered after silicate-metal differentiation (i.e. 

core formation) in the form of a “Late Veneer” (LV) im-

pactor of broadly chondritic composition [2]. According 

to HSE abundances inferred from martian meteorites, 

the planet accreted about 0.8 wt% of material of chon-

dritic composition during the late accretion stage [3]. 

Monte Carlo impact simulations and N-body simula-

tions shows that Mars is expected to have encountered 

a Ceres-sized object (~1000km across) if it accreted 0.8 

wt% during the LV [4]. The existence of the martian 

northern lowland region (dubbed the Borealis Basin) 

(e.g. [5]) and martian satellites with coplanar and circu-

lar orbits (e.g.[6]) are  potential evidences of this hypo-

thetical giant impact. The relatively late formation of the 

zircons in martian meteorite NWA7034 can be at-

tributed to a LV colossal impact near 4480 Ma that 

melted a part of the martian crust [7].  

A fraction of the impactor’s iron core is expected to 

be fragmented during its collision with Mars [8] and re-

act with the martian surface water reservoir during the 

pre-Noachian eon (4500-4100 Ma). Isotopic evidences 

[9,10] and atmospheric mapping [11] indicate that pre-

Noachian Mars could possibly have adequate surface 

water (or surface ice). Reaction between fragmented im-

pactor’s iron core and martian surface water could pos-

sibly create hydrogen, which is a greenhouse gas [12]. 

 

Method: In order to estimate the possibility of an 

early warm Mars created by LV giant impact, we ana-

lyze the fate of an iron core from a leftover Ceres-sized 

planetary embryo striking Mars during the LV. Our 

study employs SPH impact simulations as well as ana-

lytical estimations of the post-collision evolution of the 

impactor's core materials with a postulated hydrosphere 

(or cryosphere) on pre-Noachian Mars.  

 

SPH simulation results: We performed SPH im-

pact simulations between a differentiated Ceres-sized 

impactor colliding with Mars with impact velocities, 

vimp = 7 to 16 km/s and impact angles, θ = 0o to 60o. 

Figure 1 shows the statistic of the collision outcome for 

the impactor’s iron core. We found that >90% of the im-

pactor’s core materials are bound to Mars after the col-

lision until θ ≥ 50o. These bound iron material enrich 

martian mantle with HSEs. The shaded region in Figure 

1 indicate the fraction of fragmented impactor’s iron 

core that is bound to Mars after the giant impact. About 

half of the impactor’s iron core (3 x 1019 kg) is frag-

mented and bound to Mars  after the collision when θ = 

45o to 50o. These fragmented iron could possibly react 

with martian surface water and generate hydrogen. We 

estimated the size of the molten iron fragments, d, by 

the following equation:  

𝑑 = ( 
40𝜎

𝜌𝜀̇2
)

1/3

                         (1) 

[13], where ε̇ is the strain rate of the expanding molten 

iron blob, ρ = 7000 kg/m3 is the density of the iron drop-

lets and σ = 2 N/m is the surface tension for liquid iron 

[14]. In the statistically mostly likely case (θ = 45o), d ~ 

10 m. These 10 m iron fragments then further frag-

mented into ~6 mm iron hail when they finally settle on 

the surface of Mars. 

 

 
Figure 1. Mass fraction of impactor’s iron core that is 

gravitationally bound to Mars after collisions as a func-

tion of impact angle, θ. The impact velocity, vimp, is the 

same for all θ (10 km/s). 

 

Implication – impact generated H2 atmosphere: 

These 6 mm iron fragments could thus react with the 

postulated surface water reservoir on Mars and generate 

3 bar H2, which is thick enough to keep the early martian 

surface temperature above water’s freezing point 
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[15,16]. This early H2 atmosphere, however, is tenuous. 

The more intense extreme ultraviolet (EUV) of the 

young sun leads to the rapid escape of the hydrogen at-

mosphere through the process of hydrodynamic escape 

[17,18]. The escape flux of hydrogen, 𝜙H2
, is be esti-

mated by 

𝜙H2
=  

𝜀eff𝑓EUV(𝑡)𝑅

4𝐺𝑀𝑚H2

  [m−2s−1]              (2)  

[19], where G is the gravitational constant, R is the plan-

etary radius, M is the planetary mass and mH2 is the mo-

lecular mass of H2,  fEUV(t) is the EUV energy flux re-

ceived by Mars [20] and εeff = 0.3 is the escape effi-

ciency. We estimated that the H2 atmosphere would be 

fully escaped within 3 Myr by integrating Equation (2). 

Assuming the young sun as a slow rotator and hence 

around 5 times weaker  fEUV(t)  [21] would extend the 

life time of the H2  atmosphere to ~10 Myr. Alterna-

tively, if CO2 existed before the LV giant impact, εeff of 

the hydrodynamic escape would be lower due to 15 µm 

band infrared emission of CO2 [18] and therefore the life 

time of H2 could possibly be extended.  

 

Future work: Given the greenhouse nature of hy-

drogen gas and its implication for biopoesis on early Ha-

dean Earth (e.g.[22],[23]), we call for further study on 

the possible generation of an early hydrogen atmosphere 

and its effect on the surface temperature of pre-Noa-

chian Mars through more detailed hydrodynamical at-

mospheric models. The model should consider different 

Solar EUV evolution and different mixing ratio of hy-

drogen in CO2 atmosphere. 
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