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Introduction:  Meteorites provide us with a great 

diversity of extraterrestrial materials. However, to in-

terpret this record effectively we need to evaluate its 

relationship, both to the contemporary asteroid popula-

tion and to how that population has evolved with time. 

This involves addressing a number of key issues: i) 

how many asteroids/parent bodies are represented in 

the worldwide meteorite collection? [1,2,3]; ii) how 

representative is the meteorite record of both the NEO 

(near-Earth object) and main belt populations? [1,4,5]; 

iii) how useful are contemporary meteorites and aster-

oids as indicators of the composition and structure of 

first generation planetesimals; those that accreted with-

in 1-2 Myr of Solar System formation? [6]. Relevant to 

this final point are the proposals that: (i) giant planet 

migration was a major control on main belt structure 

[7] and (ii) that early planetesimal fragmentation re-

sulted in a differential loss of mantle materials [8].  

Previous parent body estimates: Burbine et al. [2] 

estimated that meteorites could sample as few as ~100 

asteroids (~27 chondritic, ~2 primitive achondritic, ~6 

differentiated achondritic, ~4 stony irons, ~10 iron 

groups, ~50 ungrouped irons). Hutchison [3] suggested 

that meteorites are sourced from approximately 120 

asteroids, with about 80 being ungrouped irons. In con-

trast, Wasson [9] argued that only 17 asteroids are 

sampled by the ungrouped irons, making a total of 26 

asteroids for the irons as a whole. 

Evidence from O-isotope studies: Here we use 

primarily the results from high-precision O-isotope 

studies, to reassess the likely number of parent bodies 

represented in the meteorite record [10].  

Primitive achondrites. With the exception of the 

brachinites, the main primitive achondrite groups (aca-

pulcoite-lodranite clan, ureilites and winonaites/IAB-

IIICD irons) are each derived from a single parent 

body (Fig. 1). Considerable uncertainty exists about the 

number of parent bodies sampled by the brachinites 

and brachinite-like achondrites [10]. A conservative 

estimate would require 2, one for the “main-group” 

brachinites, and a second for Mg-rich, brachinite-like 

samples such as Divnoe, NWA 4042, NWA 4518, 

RBT 04255, RBT 04239 and Zag (b) (Fig.2).  

Differentiated achondrites and stony-irons. Apart 

from the pallasites, which appear to be derived from 6 

distinct parent bodies [10] and the aubrites which are 

probably samples from 2 [11], the other main differen-

tiated groups (angrites, HEDs, main-group pallasites, 

mesosiderites) are each derived from unique parent 

bodies (Fig. 1). Mesosiderites and HEDs may be from 

the same parent body [10], but here we adopt a conven-

tional approach and assign each to a distinct source.  

 
Fig. 1. O-isotope composition of primitive and differ-

entiated achondrites [10]. 

 
Fig. 2. O-isotope composition of ungrouped primitive 

achondrites [10]. 

Ungrouped primitive achondrites. Based on the ev-

idence presented by Greenwood et al. [10], ungrouped 

primitive achondrites and related samples appear to be 

derived from about 16 distinct parent bodies (Fig. 2). 

However, there is considerable uncertainty associated 

with this figure [10].  

Anomalous basaltic achondrites. The origin of 

HED-like meteorites with anomalous O-isotope com-

positions is the subject of ongoing research [10,12,13]. 

A conservative estimate of their source asteroids is 4 

(one for NWA 011 and pairs; one for Ibitira; one for 
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A-881394, Bunburra Rockhole, Emmaville, Dho 007, 

EET 92023; and one for Pasamonte and PCA 91007). 

A more extreme position is that each anomalous basal-

tic achondrite is from a distinct source, in which case 

about 9 parent bodies are required. 

Irons: Here we accept the conventional view that 

iron meteorites are derived from ~60 parent bodies [2], 

but note that this might be as few as 26 [9]. 

Chondrites: A minimum of ~8 parent bodies are 

required as sources for the main carbonaceous chon-

drite groups (CB, CH, CI, CK, CM, CO, CR, CV), 2 

for enstatite chondrites (EH, EL), between 3 and 5 for 

ordinary chondrites (Low-FeO subgroup, H, L, L/LL, 

LL) and 1 each for K and R chondrites [14]. The Met. 

Bull. Database [15] currently lists 65 ungrouped chon-

drites, of which the majority (~42) are carbonaceous 

chondrite-related. It is unclear how many of these un-

grouped chondrites are from distinct sources. A con-

servative estimate would be between 10 and 15, mak-

ing the total number of chondrite sources ~ 25 to 32. 

Inclusions: Breccias such as Kaidun and Almahata 

Sitta are known to contain inclusions derived from dis-

tinct asteroidal sources [16, 17]. However, these appear 

to be relatively few in number and we have not includ-

ed them in our analysis. 

Updated parent body inventory: We can now 

update the parent body inventory of Burbine et al. [2] 

as consisting of ~120 to 132 asteroids (~60 irons, ~35 

to 40 achondrites and ~25 to 32 chondrites). Note that 

the meteoritic record is dominated by differentiated 

asteroids (irons and achondrites) ~ 95 to 100, com-

pared to ~25 to 32 chondritic bodies.  This is in clear 

contrast to the sample statistics, in which chondrites 

represent approximately 88% of all falls [15]. 

Relationship to asteroids: In the main belt the 

number of asteroids with diameters >1, 50 and 100 km 

is 1.36 x 106, 680 and 220 respectively [18]. Provided 

meteorites are just sampling the larger bodies (e.g., 

diameters >100 km), then our estimate of ~120-132 

parent bodies could be taken as an indication that we 

have a representative sampling of material from the 

main belt. However, the mechanisms involved in mete-

orite delivery are complex and it seems unlikely that 

we have material exclusively drawn from larger aster-

oids in our collections [2]. However, interestingly, 122 

notable asteroid families were identified by Nesvorný 

et al. [19], which is similar to the number of meteorite 

parent bodies identified here.  Maybe, only the for-

mation of an asteroid family causes a significant flux of 

meteoritic material to reach Earth-crossing orbits.  

Remote sensing observations provide another 

means of assessing how representative meteorites are 

of the main belt and NEO populations [10]. Remote 

sensing observations have broadly identified possible 

parent bodies for all the main chondritic and achondrit-

ic types [10].  However, apart from a few exceptions 

(e.g., Vesta, Hebe), it is extremely difficult to unam-

biguously link specific groups to asteroids.   

Asteroid belt evolution: Dynamic models suggest 

that inward-then-outward migration of the gas giants 

first cleaned out the main belt, then repopulated its 

inner regions with planetesimals that accreted in the 

inner Solar System (1 to 3 AU) and repopulated its 

outer regions with bodies that formed between and 

beyond the orbits of the giant planets [7].  The distribu-

tion of asteroid taxonomic classes in the main belt is 

consistent with this scenario, as is the distinct separa-

tion of carbonaceous chondrites from most other mete-

orite groups on plots such as ∆17O vs. ɛ54Cr [20]. 

In addition, the remnants of the planetesimals that 

were scattered into the main belt would have become 

highly deformed during multiple impact encounters 

[21].  Even apparently intact asteroids such as (4) Ves-

ta may be main-belt interlopers [22]. So, do we have 

any samples of these first generation asteroids? As dis-

cussed earlier, differentiated meteorites appear to rep-

resent the majority of known parent bodies and are 

probable remnants of early-formed planetesimals. 

However, at best they are highly deformed and numeri-

cally depleted vestiges of the original population [10].  
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