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Introduction:  The Kuiper Belt Object Haumea is 

one of the most intriguing and puzzling objects in the 
outer Solar System. Haumea is remarkable because it 
likely experienced an early giant impact [1]. Clues 
leading to this hypothesis include its rapid rotation 
period of 3.9153 hours, multiple satellites, and dynam-
ically-related family members [1]. Haumea’s surface is 
spectrally nearly (> 98%) pure water ice [2,3], imply-
ing Haumea had differentiated into a rocky core and 
pure ice mantle, which the impact revealed by strip-
ping the outermost layers. Different impact scenarios 
[1,4-6] could be distinguished if Haumea’s internal 
structure were better understood.  

Haumea’s mass and inferred mean radius of about 
718 km [7] imply a mean density of 2.58 g/cm3. This 
high density suggests that Haumea is composed of a 
rocky core with an icy veneer. Haumea’s light curve 
shows a ∆m~0.3 photometric variation over the rota-
tion period [7-9]. Because of Haumea’s surface uni-
formity [2], this light curve is due to varying area pre-
sented to the observer, and not albedo variations. 
Haumea’s light curve and thermal emission have been 
successfully modeled assuming that Haumea is a ho-
mogeneous triaxial Jacobi ellipsoid (defined as a > b > 
c; 0.43 < c/a < b/a < 1) of uniform density ~2.6 g/cm3 
[7, 8, 10]. These studies agree that Haumea’s rotation 
axis is normal to the line of sight and that it reflects 
with a high-albedo icy-type scattering function [8,9]. 
The most recent study [9], which was able to resolve 
Haumea from its moons, predicts that Haumea dimen-
sions are 960  × 770 × 495 so that b/a = 0.80, and c/a = 
0.52.  

These two results are contradictory: Haumea can-
not be uniform in density and have a rocky core sur-
rounded by an icy crust. This could potentially invali-
date the common use of a Jacobi ellipsoid solution [11] 
because the behavior of a differentiated body under 
fast rotation is uncertain. 

We present preliminary results of our investigation 
into the effects of Haumea’s high density and fast 
rotation on its peculiar elongated shape. Our numerical 
simulations test whether a differentiated Haumea-like 
body forms a Jacobi ellipsoid shape, or alternatively 
another triaxial ellipsoid shape.  

Methods:  We perform numerical simulations us-
ing the pkdgrav N-body code [12,13]. This code was 
used for previous Haumea studies [5,14] to test colli-
sional scenarios, and the likelihood of Haumea form-
ing by rotational fission. To study the shape of 

Haumea, we modeled the body as a rubble-pile: a grav-
itationally bound aggregate of 1,000 particles with no 
tensile strength [15,16]. Previous simulations [15] 
show that a thousand particles is sufficient to resolve 
general shape features in a rubble pile. An important 
difference between our simulations and those of [5] is 
that we use the soft-sphere discrete element method 
[SSDEM] described in [17], based on [18], whereas [5] 
used the hard-sphere discrete element method 
[HSDEM] from [12] as the collisional routine. 

We created two different types of aggregates, both 
composed of 10,000 particles with a total mass equal 
to Haumea’s mass (4.006 × 1021 kg; [19]). In the first 
case, all particles are 33.5 km in radius, have density 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 A simulated model (S2) of Haumea using 
10,000 particles of different sizes (largest/smallest size 
ratio  = 3; power law index = -3), composed of a rocky 
core (density ~ 3 g/cm3; green particles) and an icy 
crust (density = 0.917 g/cm3; blue particles). The ag-
gregate evolved from image A (a sphere) to B (an 
oblate spheroid) as we spun it at Haumea’s rotation 
period for ~30 hours (in simulated time).  
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2.584 g/cm3, and are built inside a 3,000 km radius 
sphere. In the second case, the particles are different-
sized: the smallest particles are 20 km in radius and the 
largest to smallest particle size ratio is 3 (power law 
index to -3 with a continuous distribution). They have 
the same density as case 1 and are built inside a 2,500 
km radius sphere.  

We allowed each aggregate to gravitationally settle 
and they have bulk densities and average radii compa-
rable to Haumea. Then we altered the masses of the 
outer layer of particles for each aggregate to test dif-
ferent scenarios, and spun these aggregates to 
Haumea’s rotation period. The goal was to determine if 
a homogeneous Haumea and a differentiated Haumea 
both form Jacobi ellipsoids. We determined the final 
shape of aggregates in three separate scenarios: 

Scenario 1: S1 is a homogenous aggregate of den-
sity 2.6 g/cm3. This case is a test to be certain we can 
reproduce a homogeneous Jacobi ellipsoid like [7-9] 

Scenario 2: S2 is an aggregate with a ~30 km crust 
of ice Ih (hexagonal crystal form of ordinary ice; densi-
ty 0.917 g/cm3), the remaining portion of the body is 
density ~3 g/cm3 for the total mass of the aggregate to 
equal Haumea’s mass. This scenario was proposed by 
[11,20] who concluded that Haumea is nearly uniform 
in density with a thin, < 30 km, icy crust.  

Scenario 3: S3 is an aggregate with a core of densi-
ty 3.5 g/cm3, the remaining portion of the body is 
composed of ice Ih. Here, the core has a radius ~700 
km, so that the average density and mass of the aggre-
gate are characteristic of Haumea. The core density we 
assumed here is that of Vesta [21].  

These three aggregates were gravitationally settled, 
and spun to Haumea’s rotation rate for 30–60 hours in 
simulated time. We then calculated the axis lengths of 
each aggregate using the MATLAB function ellip-
soid_fit which fits an ellipsoid surface to a set of three-
dimensional points (in our case, this is the 10,000 
particles and their positions) [22]. The dimensions of 
these bodies then allows us to determine if Haumea’s 
shape is a Jacobi ellipsoid.  

Preliminary Results and Discussion: We have 
completed simulations of the three different scenarios; 
all aggregates have average density ~ 2.6 g/cm3, total 
mass of about 4.006 × 1021 kg, and rotation period of 
3.9153 hours. So far, when we start with spherical 
aggregates, we are only able to form Maclaurin sphe-
roids (Figure 1). It is interesting that although we did 
not form Jacobi ellipsoids, the c/a ratios of the aggre-
gates for each scenario are different (Table 1). From 
S1, the c/a ratio increases by 11% to S2 while the ratio 
decreases by 11% to S3. This implies that when mod-
eling Haumea’s shape, one must take into account 
Haumea core and crust compositions, and should not 

assume that the body is homogeneous. Deviations from 
homogeneity will affect the axis ratios. 

In order to generate the shapes predicted by [7-9], 
we plan to initialize the aggregates as Jacobi ellipsoids 
and see how they evolve (i.e., if they remain Jacobi 
ellipsoids) depending on the applied scenario. [5] uti-
lized pkdgrav to simulate aggregate collisions with the 
goal of forming a Haumea-like aggregate. Although 
they were not interested in Haumea’s shape, they suc-
cessfully formed an aggregate with axis ratios similar 
to those predicted by [9]; this demonstrates that pkd-
grav is able to form Jacobi ellipsoids under the right 
conditions. 

 
Table 1 c/a ratios from literature and our case 1 

(different size-particles) scenarios 
 [9] S1 S2 S3 

c/a 0.52 0.68 0.75 0.60 
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