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Overview: Motivated by the importance of shad-

ows to cold-trapping of volatiles on the Moon and oth-
er airless bodies [1], we consider the size distribution 
of shadows at high incidence angles.  We analyzed 
high-resolution (~1 m/pixel) images from the Lunar 
Reconnaissance Orbiter (LRO) [2] Narrow-Angle 
Camera (LROC-NAC) [3] to quantify instantaneous 
shadowing. A total of 2758 NAC images acquired with 
solar incidence angles 70 – 89° were analyzed using an 
automated algorithm to extract shadow patches. These 
instantaneous shadow fractions were compared to 
model surfaces composed of varying proportions of 
craters and rough inter-crater plains. Surface roughness 
is parameterized by the root-mean-square (RMS) slope 
of a normal distribution. Smith [4] developed analytical 
formulas for the shadow fraction of random Gaussian 
surfaces as a function of illumination angle, which 
compared favorably to the numerical model. We de-
veloped analytical expressions for the size of shadows 
in spherical (bowl-shaped) craters and the ratio of 
permanent to instantaneous shadow area, and consider 
the dependence of the shadows on the depth to diame-
ter ratio of the craters [5]. Here we focus on the instan-
taneous shadows, their distribution of sizes and de-
pendence on incidence angle. 

Results: Our survey of images demonstrates that 
small scale (<1 km) shadows contribute non-negligibly 
to the overall shadow area.  Figure 1 shows an example 
of the analysis performed on an LROC NAC image at 
incidence angle 87.3°. This image was chosen as it 
shows an abundance of small shadows, with most of 
the shadowed area occupied by patches of size <1 km. 
Other images show different size distributions, some 
with large patches (> 1 km) dominating the distribu-
tion. 

Figure 2 shows a histogram of shadow areas for all 
the images analyzed, as a function of equivalent shad-
ow radius (defined as the radius of a circle with an 
equivalent area). The distribution is computed in loga-
rithmic size bins and in 1° incidence angle bins. We 
found the incidence angle dependence of the distribu-
tions may be accounted for by a low-order fit; the gray 
traces thus correspond to different incidence angles in 
the range explored, with a simple scaling applied. The 
black trace represents the average of the scaled histo-
grams.  

We interpret the size distribution of shadows as fol-
lows. At small sizes, below ~3 m, the distribution tails 
off due finite resolution effect of the images.  At large 

sizes, above ~3 km, the distribution suffers from ap-
proaching the finite domain of the images.  At the in-
termediate range the distribution of shadows is reliable 
and shows an interesting feature. At sizes between ~3 
m and ~100 m, the histogram is approximately flat, 
that is, there is equal shadow area in equal logarithmic 
size bins.  At sizes between ~100 m and ~3 km the 
histogram is significantly steeper, corresponding to a 
larger power law exponent.  We find a distinct break in 
slope at ~100 m, indicating a transition of the best-fit 
power law exponent. We will provide possible inter-
pretations of this feature. Furthermore, we will use the 
statistical surface model to estimate the areal fraction 
of permanent shadow over a range of spatial scales. 

 
  

Figure 1: An example of the shadow analysis per-
formed on LROC NAC image M102005798LC. The 
detected shadows are shown on the right panel in yel-
low. On the left, the panels show histograms of the 
pixel values used to set a shadow threshold (top), a 
cumulative distribution of the shadow area as a func-
tion of shadow radius, and the differential area distri-
bution in coarse size bins. 
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Figure 2: A normalized histogram of shadow areas as a function of spatial scale (equivalent shadow radius), 
computed in logarithmic size bins. The gray traces correspond to different incidence angles in the range ex-
plored, with a scaling applied. The black trace represents the average of the scaled histograms.  
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