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Introduction:  Lunar granulitic breccias are a di-

verse group of rocks that have been thermally meta-

morphosed, producing a granular texture from which 

their name derives. Their compositional diversity is 

shown by the variation in mg#, the molar ratio 

Mg/(Mg+Fe) [1], which ranges from 0.56 to 0.89. 

Their thermal histories and clear evidence for breccia-

tion indicate a connection with impact processes in 

craters in the 100–200 km size range [2,3]. Coupled 

with the diversity in composition, it is clear, as Hudg-

ins et al. [3] state that “granulitic breccias are the prod-

ucts of a common process and not a common event.” 

Norman et al. [4] suggest that formation of at least one 

granulitic breccia, 67955, could have involved crystal-

lization in an impact-melt sea (10-20 km thick) pro-

duced during a much larger, basin-forming event. We 

summarize the current state of knowledge of the lunar 

granulite suite, focusing on compositional diversity and 

thermal histories. 

Textures: Lunar granulites are all breccias. In most 

of them minerals are uniform in composition, though 

two are clearly polymict. They are cataclastic, with 

remnant clasts set in a finer-grained, metamorphosed 

matrix; in several cases clasts are granulitic and the 

matrix is fragmental. More than one episode of breccia 

makes classification difficult, but the broad categories 

defined by Cushing et al. [2] are useful. They define 

three groups: (1) granulitic, which are entirely meta-

morphic; (2) granulitic-poikilitic, which are very simi-

lar to the granulitic samples, but contain poikilitic py-

roxene crystals in the matrix (perhaps indicating some 

partial melting during metamorphism); and (3) poi-

kilitic samples, which are coarse-granied and have ig-

neous textures with pyroxene oikocrysts often 1 mm in 

length. The coarse poikilitic samples have been inter-

preted as impact melts [2,4]. Because of the similarty 

in texture and grain size we combine the first two cate-

gories, giving simpler and usable categories of granu-

litic and poikilitic, which make up the “granulitic 

suite.” 

Compositions: The granulitic suite varies in chem-

ical composition and mineral abundances, as show in 

Fig. 1 (mg# versus modal plagioclase) and Fig. 2 (mg# 

versus modal olivine in the mafic assemblage). There 

are distinctive correlations between mg# and decreas-

ing plagioclase and increasing olivine, suggesting that 

the rocks might be mixtures of a mafic component with 

ferroan anorthosite. The mafic component could be 

either troctolic highland rocks or mantle rock excavat-

ed by large impacts. The amount of orthopyroxene to 

high-Ca pyroxene increases with mg# (Fig. 3), indicat-

ing that the orthopyroxene was derived from a magne-

sian noritic or orthopyroxenitic component.  

 
Fig. 1. Modal plagioclase vs bulk mg# in granulite suite 

rocks [12-14] compared to these parameters in the lunar 

highlands as determined from reflectance spectra [5]. 

 
Fig. 2. Modal olivine in mafic assemblage vs mg# in bulk 

rock for the granulitic suite [12-14] compared to these pa-

rameters in the lunar highlands as determined from reflec-

tance spectra [5]. 

The granulitic suite rocks are consistent with an 

origin in the feldspar-rich highlands, as shown by a 

comparison (Figs. 1 and 2) of the granulite data with 

mineral abundances extracted from reflectance spectra 

[5]. The spectral data are binned to 2-degree pixel size. 

In general, the mg# of the granulites are in the upper 

range of values found for the global dataset, suggesting 

a mixing of feldspathic components with a more mafic 

component with higher mg#. While we cannot rule out 

the presence of troctolites and norites in the granulite 

protoliths, the data are consistent with the granulitic 

suite being an impact mixture of ferroan anorthosite 
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crustal rock and mantle rock rich in forsteritic olivine, 

implying overturn of early magma ocean cumulates 

before formation of the granulites.  

 

 
Fig. 3. Modal abundance [12-14] of orthopyroxene to total 

pyroxene. 

Thermal histories: The conditions of metamor-

phism or melting of the granulitic suite can place con-

straints on where in a crater or basin setting the rocks 

were mixed and heated. An origin by contact metamor-

phism in an impact melt sheet in a 100 km crater [2,3] 

implies a drastically different thermal history than an 

origin as a cumulate in an impact melt sea 10 km thick 

[4]. Previous work suggests that metamorphic tempera-

tures were high (most >1000C), as determined by two-

pyroxene thermometry [2.3]. In preparation for new 

measurements of cooling histories, we compiled the 

published pyroxene data for granulites and calculated 

their two-pyroxene equilibrium temperatures (Fig. 4). 

Temperatures were determined using three different 

techniques [6-8]. All results are the same within stated 

uncertainties (±50C), but to avoid scatter caused by 

the small differences between methods, we report only 

the temperatures calculated by [6]. 

 

 
Fig. 4. Two-pyroxene equilibration temperatures plotted 

against mg# in orthopyroxene. Temperatures calculated us-

ing one method [6]; pyroxene data from [2-4,11]. 

 

The temperatures for most of the samples exceed 

1000C, and all are >900C. Most high-Ca pyroxene 

occurs as exsolution lamellae or small grains in the 

matrices of the rocks, averaging <10 µm across. Using 

the augite diffusion coefficient of [9] for the C-

direction in a crystal (the rate-determining mineral as 

diffusion in orthopyroxene is faster), we estimated the 

cooling rates needed to diffuse 5 µm (half-width of the 

average lamellae) by calculating the total of the mean-

diffusion distance in small isothermal steps using the 

relation X2 = 2Dt, where X is the mean diffusion dis-

tance, D is the diffusion coefficient, and t is time. For a 

granulite cooling from 1075 C, the cooling rate needs 

to be > 100C/y. Starting at 1025 requires cooling at > 

5C/y, and starting at 925C requires a cooling rate 

>1C/y. All these are much greater than expected for 

cooling of a cumulate inside a 10-km impact melt sea. 

Such a body of impact melt is not unlike a terrestrial 

layered intrusion such as the Stillwater igneous com-

plex, which cooled at about 1C/My [10], although that 

value is uncertain because of subsequent metamor-

phism. 

Impact setting: If granulites contain a mantle 

component excavated during a large (even basin-

forming) impact, their final assembly and metamor-

phism needs to be in a setting compatible with their 

relatively rapid cooling. One possibility is that during 

formation of a multi-ring basin, hot mantle-derived 

rock in the basin interior mixed with crustal rock that 

flowed towards the basin interior, as suggested by 

modeling [11]. This does not preclude formation in 

smaller impact events as proposed previously [2,3]. 
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