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Introduction:  Enstatite chondrites (ECs) are con-

sidered to represent the best analogue material for the 

building blocks of the primordial Earth, due to their O-, 

Ca-, Ti-, Cr-, and Ni-isotopic compositions, as well as 

their bulk chemistry [1–5]. Their major constituents 

formed under highly reducing conditions and show 

only very minor signs of aqueous alteration [6,7], sug-

gesting an origin in the inner solar system [8]. The 

whole-rock nitrogen isotopic composition of the ECs is 

slightly 
15

N-depleted with 
15

Nair = –24 ‰ [e.g., 9]. 

Sinoite (Si2N2O), as well as Si- and Ti-nitrides, are 

generally considered as major nitrogen carriers in these 

meteorites, but neither their isotopic compositions nor 

their abundances have been well constrained so far. 

Only a few sinoite grains from two ECs have been 

studied for their N-isotopic composition [10,11]. Sili-

con nitride (Si3N4) has been investigated in acid resi-

dues from the ECs Indarch and Qingzhen [e.g., 12,13]. 

Apart from presolar Si3N4 grains, which typically show 

large 
15

N-enrichments [e.g., 13], the majority of silicon 

nitrides in these meteorites do not show significant 

deviations from the terrestrial value [12], or only a 

small negative 
15

N-anomaly [14]. Here, we report on 

results from an in-situ investigation of silicon nitride in 

Pecora Escarpment (PCA) 91020 (EL3), Kota-Kota 

(EH3), and Indarch (EH4) to determine their N-

isotopic compositions in comparison with other EC 

constituents, and to revisit possible formation scenarios 

(exsolution, nebular condensation, or parent body met-

amorphism). 

Samples & Experimental:  Thin sections of PCA 

91020, Kota-Kota, and Indarch were characterized by 

backscatter electron (BSE) mapping with a LEO 1530 

FE-SEM at the Max Planck Institute for Chemistry 

(MPIC) in Mainz. Si3N4 grain candidates were identi-

fied in large-area element maps of N, O, and Si ac-

quired with an Oxford X-Max 80 SDD EDS-detector, 

and their compositions were determined subsequently 

by quantitative EDS-measurements. Suitable grains 

were then selected for isotopic analysis with the MPIC 

NanoSIMS 50. A ~100 nm Cs
+
 primary ion beam (~1 

pA) was rastered over selected sample areas, and sec-

ondary ion images of 
12,13

C
–
, 

12
C

14
N

–
, 

12
C

15
N

–
, and 

28
Si

–
 

were recorded in multi-collection. 

The trace element content of one large (2×10 µm) 

Si3N4 grain from Indarch was studied with the IDLE3 

TOF-SIMS at the University of Manchester, with an 

Au cluster liquid metal ion source (beam size ~500 

nm). Transmission electron microscopy (TEM) anal-

yses were performed on a Zeiss Libra 200FE (200 kV) 

at the Institute for Mineralogy at the University of 

Münster to investigate the structure of nitride grains. 

Results & Discussion:  We measured the C- and 

N-isotopic compositions of 268 Si3N4 grains from 

metal-sulfide assemblages from PCA 91020, Indarch, 

and Kota-Kota (Fig. 1). 
13

CPDB values of individual 

grains range from (–168±60) ‰ to (242±113) ‰, with 

a weighted average 
13

C of (3±1) ‰, and the 
15

Nair 

values range from (–153±39) ‰ to (46±113) ‰, with a 

weighted average 
15

N of (–62±1) ‰. This average 

composition is significantly lighter than both reported 

 

Figure 1. C- & N-isotopic compositions of 268 Si3N4 

grains from PCA 91020, Indarch, and Kota-Kota. 

Reference data are from [12] (2 grains with 

13
C>500‰ are not shown). Errors are 1σ.  

N-isotopic compositions for bulk ECs [9,15] and the 

sinoite [10,11]. The N-isotopic data of Si3N4 from 

Qingzhen by [12] show no significant deviation from 

the terrestrial value, except for two grains with deple-

tions in 
15

N at the 3σ-level. The large 
13

C-deviations 

from the solar system value for several grains from 

[12] are attributed to adhering presolar SiC grains from 

the grain separate. Our data suggest a general 
15

N-

depletion for Si3N4 of Solar System origin in ECs. If 

the average 
15

N from this study is representative for 

all Si3N4 from ECs, other N-carriers with heavier N-
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isotopic compositions must be contributing significant-

ly to the whole-rock compositions. 

We determined Si3N4 abundances for several indi-

vidual metal-sulfide nodules from PCA 91020 and 

Indarch, and found values ranging from 2,200 to more 

than 10,000 ppm, corresponding to N abundances from 

880 ppm to >4,300 ppm. These concentrations are 

much higher than the maximum amount of N that can 

be introduced into liquid Fe metal under highly reduc-

ing conditions (~450 ppm at T ~1,300 K, p(N2) ~1 

atm) [e.g., 16], although higher levels can be obtained 

under high-pressure conditions. However, such condi-

tions do not constitute a likely formation scenario for 

N-bearing metal in the solar nebula, and both exsolu-

tion of Si3N4, from the metal or formation by impact 

processing do not appear to be viable scenarios. 

TOF-SIMS analysis of the large nitride grain from 

Indarch confirmed the presence of O, which was ini-

tially indicated by EDS analysis. We also found small 

amounts of Cr, as well as Na and Ca in localized re-

gions. Cr/Si ranges from (5.6±0.6)×10
–3

 to 

(8.1±0.3)×10
–3

 (0.4–0.6×CI), and for the upper part of 

the grain, we found Na/Si of (3.1±0.1)×10
–3

 (0.05×CI), 

together with Ca/Si of (2.28±0.03)×10
–2

 (0.4×CI). Two 

large Si3N4 grains (each several µm in diameter) from 

two different metal-sulfide assemblages in PCA 91020 

were prepared by FIB and studied by TEM. Bright 

field imaging (BF-TEM), as well as selected area elec-

tron diffraction (SAED) analysis clearly showed that 

the grain is polycrystalline, with respective d values 

mainly corresponding to nierite (Fig. 2). They consist 

of a multitude of sub-grains with sizes of 100-500 nm. 

Besides unaltered Si3N4 grains with small (few nm in 

size) Ni-rich inclusions (schreibersite, perryite, tae-

nite), areas that experienced varying degrees of altera-

tion were found, as well as cracks that sometimes cor-

respond to grain boundaries, indicating that the nitride 

grain experienced mechanical stress. The altered re-

gions were identified as the major carrier of oxygen (as 

Fe oxides), while the still pristine and homogeneous 

areas did not contain significant amounts of O. A con-

siderable fraction of the grains contain small amounts 

of S, while the surrounding Fe,Ni metal shows no S 

above detection limit. 

Conclusions:  Si3N4 grains from PCA 91020, 

Indarch, and Kota-Kota have light N-isotopic composi-

tions with 
15

Navg = (–62±1) ‰. The abundances of 

Si3N4 (and respective N concentrations) in individual 

metal-sulfide assemblages are too high to be explained 

by exsolution from the metal under nebular conditions. 

Two large silicon nitride grains were clearly identified 

as polycrystalline aggregates, consisting of a multitude 

of sub-µm-sized grains in various orientations. O is 

present in the grains as Fe oxides in the more altered 

regions. The high Si3N4 abundances in individual met-

al-sulfide nodules, the occurrence of polycrystalline 

grains, and the presence of S in unaltered Si3N4 grains 

(while absent in the surrounding metal) argue against 

grain formation by exsolution or parent body metamor-

phism, and seem to support a nebular origin. 

Figure 2. BF-TEM image of grain PCA_H_2_1, with 

SAED pattern (inset) showing the polycrystalline 

structure. White lines in the BF image are cracks, 

likely caused by mechanical stress. 
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