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Introduction:  Reconciling the paradoxical combi-

nation of primitive and highly evolved chemical attrib-
utes of the lunar Mg-suite has sustained decades of 
debate about mantle processes [1–4] during and after 
formation of the moon’s major silicate reservoirs. 
Models must explain the unique chemical characteris-
tics of the Mg-suite, satisfy phase equilibrium con-
straints imposed by the major element compositions of 
these rocks, and accommodate the heat budget associ-
ated with melting cumulate source materials. Most of 
the petrographic analysis on Mg-suite rocks in general, 
and troctolite 76535 (a cumulate of igneous origin with 
the texture of a high-grade metamorphic rock) in par-
ticular, have focused on low-temperature processes 
preserved in recrystallized or late-forming phases. In 
this study, we are extracting temporal constraints on 
the primary igneous history of 76535 using subtle 
compositional zonation inherited during initial growth 
of early-formed igneous mineral grains. 

Petrographic and isotopic constraints on cooling 
history:  The low-temperature portion of 76535’s 
cooling history has been addressed using multiple ap-
proaches yielding nuanced results. The “annealed” 
texture of the plagioclase supports the initial character-
ization of 76535 as deep-seated intrusive rock perhaps 
requiring 108 years to fully cool, an interpretation rein-
forced with x-ray precession photography and the 
compositions of coexisting Fe-Ni metal phases associ-
ated with symplectites at the boundaries between oli-
vine and plagioclase [5]. Cooling rates of 1.5-3.9 de-
grees per million years are suggested by combining 
ages representing closure of various isotopic systems 
for the 825 to 650 oC temperature range [6,7]. On the 
basis of Fe-Mg ordering in orthopyroxene, cooling at 
0.04 degrees per year (26,000 times faster than the 
high-temperature cooling rate) is posited through the 
500 oC isotherm, suggesting that deep-seated materials 
were excavated from depth while still warm [8]. In 
contrast to the subsolidus history, cooling rates at 
magmatic temperatures are unresolved, and thus the 
timing of magma emplacement in the lower crust is 
unknown to within ~100 million years (Fig. 1).  

Methods:  We studied two regions of interest 
(ROI) in thin section 76535,52 using polarizing light 
microscopy (PLM), x-ray element intensity mapping 
and wavelength-dispersive spot analysis by electron 
probe microanalysis (EPMA). X-ray element maps (Al 
and P in olivine; Na in plagioclase) were modeled us-

ing simple assumptions about the initial distributions 
and concentrations of diffusing elements, and we solve 
Fick’s second law in 2D using finite difference meth-
ods [9]. The olivine model incorporates anisotropy of 
diffusivities [10] and utilizes crystal orientation deter-
mined with EBSD. 

Results. ROI-1 is a multiphase cluster of olivine, 
plagioclase, orthopyroxene, symplectite, and interstitial 
minerals (Fig. 2). Aluminum x-ray element mapping 
(not shown) reveals no intra-olivine variation, whereas 
spatial variation in P concentration occurs within the 
olivine and at its margin (Fig. 2b). The latter concen-
tration zones are interpreted to be the result of dissolu-
tion-precipitation, but the former are far more likely to 
have formed during the initial growth of the olivine 
crystal from silicate melt [11–13]. The diffusion model-
ing yields P concentration distribution similar to that in 
the natural sample (Fig. 3). Either 250-300 y, 2.5-3 ky, 
or 25-30 ky are needed to broadly match the P and Al 
data for diffusion at 1300, 1100, or 900oC, respective-
ly.  

ROI-2 contains a single euhedral (igneous) plagio-
clase crystal completely surrounded (within section) by 
orthopyroxene. X-ray mapping reveals Mg-rich blebs 
~1µm in diameter, as well as concentric variation in Na 
concentration. Taking into account the presence of 
local enrichment in Na associated with pyroxene exso-
lution, the concentration profile is matched after 15 ky 
at 1300 oC, 4.8 My at 1100 oC, or (physically impossi-
ble) 11 Gy at 900 oC. We have not attempted to find 
the combination of temperature and time that satisfies 
all three data sets, but note that similar duration-
temperature pairings resolve both the P and Al in oli-
vine data reasonably well. 
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Figure. 1 Constraints on the thermal history of 76535 below ~900 oC highlight the relative scarcity of infor-
mation about its high-temperature history. 

 
Figure 2. ROI-I as imaged in cross-polarized light (a), by x-ray mapping (b) and provisionally interpreted (c). 

 

 
Figure 3. Numerical simulation of phosphorus diffusion in olivine of ROI-1. 
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