A THERMODYNAMIC STUDY OF INVERSION OF MgO AND SiO₂ RELATIVE FUGACITY AT CAI EVAPORATION. S. I. Shornikov¹, O. I. Yakovlev¹, M. A. Ivanova^{1,2}. ¹Vernadsky Institute of Geochemistry & Analytical Chemistry of RAS, Kosygin st., 19, Moscow, 119991, Russia; e-mail: <u>sergey.shornikov@gmail.com</u>. ²Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560.

In the framework of the developed semi-empirical thermodynamic model of the evaporation of oxides from refractory melts [1], we studied the changes of the residual melt compositions of Ca-Al-inclusions in the chondrite (CAIs) and Krymka ordinary chondrite at 2300 K. The used thermodynamic model was based on the theory of ideal associated solutions and the experimental data of oxide activities in melts of the CaO-MgO-FeO-Al₂O₃-TiO₂-SiO₂ system found by Knudsen mass-spectrometric effusion method in the temperature range of 1600-2500 K. The accuracy of the approach was confirmed earlier [2] by the experimental data on two different samples. The first of them was a sample of lunar alumina basalt whose evaporation was studied by the mass spectrometric method using Knudsen tungsten effusion cells at 1577-2502 K [3]. The second sample was a synthetic oxide material with a solar composition whose vacuum evaporation was studied using graphite crucible at 1673–2273 K [4].

As shown in Fig. 1*a*, despite the differences in the considered initial compositions – CAIs, 5aN, AOA, FAN, Krymka ordinary chondrite [5–8] there is a definite similarity in the change of the ratio of the most refractory melt components – CaO and Al_2O_3 at evaporation. This change is accompanied by inversion of MgO / SiO₂ relative volatility typical for most compositions that is the MgO predominant evaporation (Fig. 1*b*). However, evaporation of the 5aN composition is the opposite – the ratio is increasing.

Fig. 2 shows the melt composition change at evaporation of the AOA-52E and the 5aN compositions, and the oxide activities a_i in the melts at 2300 K. The initial melt compositions of the AOA-52E and the 5aN are in [6]. It is possible to notice the MgO predominance (as compared to SiO₂) in the initial composition of AOA-52E and conversely the SiO₂ predominance (as compared to MgO) in the initial composition of 5aN. The inversion of the ratios of MgO / SiO₂ occures at evaporation. It correlates with the inversion of the oxide activities (oxide volatilities).

To explain these observations, we consider the oxide activities in the CaO–MgO–SiO₂ and MgO–Al₂O₃– SiO₂ ternary systems at 2300 K and at the typical molar ratio of MgO / SiO₂ = 2 / 3 (Fig. 3). Fig. 3*a* shows that the increase of the CaO content in the CaO–MgO–SiO₂ system leads to a decrease in SiO₂ activity (and therefore volatility) and increases the MgO activity (volatility). In the case of the MgO–Al₂O₃–SiO₂ system (Fig. 3b) the increase in the Al₂O₃ content leads to a much lesser extent reduces SiO₂ activity (volatility) (compared to the CaO–MgO–SiO₂ system), and significantly reduces MgO activity (volatility) (compared with CaO–MgO–SiO₂ system). In particular, for the CaO– MgO–SiO₂ system containing 50 mol. % CaO $a(SiO_2)$ = 0.0032 and a(MgO) = 0.61 (Fig. 3a), and for the MgO–Al₂O₃–SiO₂ system containing 50 mol. % Al₂O₃ $a(SiO_2) = 0.11$ and a(MgO) = 0.066 (Fig. 3b).

Thus, the Al₂O₃ predominance (compared to CaO) in the 5aN composition (Fig. 1) shows the ordinary ratio of MgO / SiO₂ relative volatility as for the case of simple oxides – MgO and SiO₂ (Fig. 2*c*, *d*). In the case of low Al₂O₃ content (compared to CaO) we observe inversion of MgO / SiO₂ relative volatility leading to the MgO preferential evaporation (compared to SiO₂) from other presented melts (Fig. 2*a*, *b*).

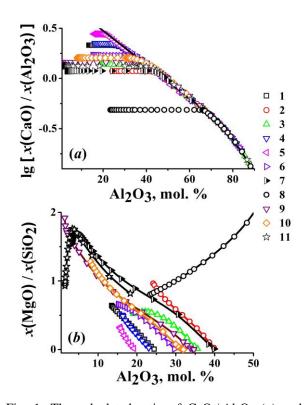


Fig. 1. The calculated ratio of CaO / Al_2O_3 (*a*) and MgO / SiO₂ (*b*) in the residual melts at the evaporation at 2300 K. Designations: 1 – 3N-1, 2 – 3N-6, 3 – 3N-7, 4 – 3N-12, 5 – 3N-20, 6 – 3N-Host, 7 – AOA-52E, 8 – 5aN [5, 6]; 9 – FAN1, 10 – FAN2 [7]; 11 – Krymka ordinary chondrite [8].

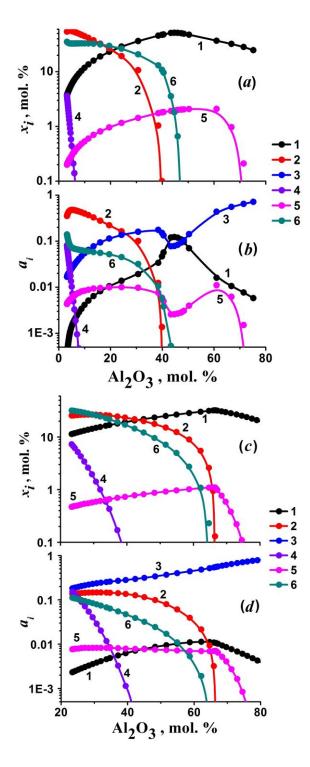


Fig. 2. The calculated change in compositions of CAIs melt (a, c) and the oxide activities (b, d) in residual melts of AOA-52E (a, b) and 5aN (c, d) at evaporation at 2300 K. Designations: 1 - CaO, 2 - MgO, $3 - \text{Al}_2\text{O}_3$, 4 - FeO, $5 - \text{TiO}_2$, $6 - \text{SiO}_2$.

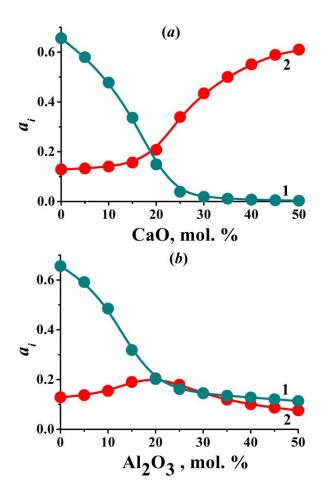


Fig. 3. The calculated values of activities of SiO₂ (1) and MgO (2) *vs*. the CaO content in the CaO–MgO–SiO₂ system (*a*) and *vs*. the Al₂O₃ content in the MgO–Al₂O₃–SiO₂ system (*b*) at 2300 K and at the typical molar ratio of MgO / SiO₂ = 2 / 3.

The present study was supported by RAS Presidium's Program #7 (*Experimental and theoretical studies of Solar system objects and star planetary systems. Transients in astrophysics*).

References: [1] Shornikov S. I. (2009) *Herald Earth Sci. Dept. RAS*, 27, 1–4 (in Russian). [2] Shornikov S. I. (2016) *IX All-Russian Conf. on "Ceramics and composite materials"*, 446–449 (in Russian). [3] Markova O. M. et al. (1986) *Geochemistry Int.*, 24, 1559–1569. [4] Wang J. et al. (2001) *GCA*, 65, 479–494. [5] Ivanova M. A. et al. (2015) *Meteoritics & Planet. Sci.*, 50, 1512–1528. [6] Ivanova M. A. et al. (2017) *LPSC XXXXVIII*. [7] Mendybaev R. A. (2013) *GCA*, *123*, 368–384. [8] Yakovlev O. I. et al. (1983) *LPS XIV*, 869–870.