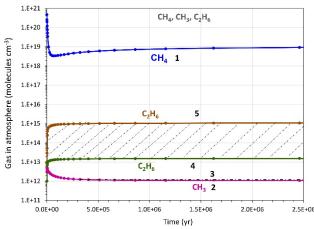
CH₄-CH₃-C₂H₆ IN TITAN'S ATMOSPHERE: EXPLICIT SOLUTIONS AND NEAR-STEADY STATE OF A SIMPLIFIED REACTION SYSTEM. A. E. Gilliam¹, J. Wunsch², and A. Lerman¹. ¹Department of Earth and Planetary Sciences, Technological Institute F-379, 2145 Sheridan Road, Northwestern University, Evanston IL 60208-3130, <u>ashley@earth.northwestern.edu</u>, <u>alerman@northwestern.edu</u>, ²Department of Mathematics, 2033 Sheridan Road, Northwestern University, Evanston IL 60208, <u>jwunsch@northwestern.edu</u>

Introduction: Methane gas (CH₄) is one of the main components of the atmosphere of Titan, the largest satellite of Saturn. At present, $pCH_4 = 0.1$ bar, and the remainder made of N₂ at the total P = 1.5 bar. Methane undergoes thermal escape from Titan's atmosphere and photolytic dissociation to other hydrocarbons [2, 3]. The very detailed sequence of reactions leading from CH₄ to CH₃ to ethane C₂H6 accumulating on Titan's surface and other products may be replaced by a simplified system of three reactions [1]:


(1) $d[CH_4]/dt = -k_{12}[CH_4] k_{12} (y^{r-1})$

(2) $d[CH_3]/dt = k_{12}[CH_4] - k_{23}[CH_3]^2 k_{23} (cm^3 molec^{-1} yr^{-1})$

(3) $d[C_2H_6]/dt = k_{23}[CH_3]^2 - k_3[C_2H_6] k_3 (yr^{-1})$

where brackets [] denote concentrarions in mole-cules/cm 3 .

Eqs. (1) and (3) are first-order ordinary differentiasl equations (ODE), and (2) is a Riccati equation. Eqs. (1)-(3) can be solved numerically for known values of the reaction rate pasrameters k_i , but no explicit solution, as far as we are aware, has been published for the thire reaction system.

Fig. 1. Calculated concentrations of CH₄, CH₃, and C₂H₆ in Titan's atmosphere. **1:** CH₄ [2]. **2:** CH₃ concentration from eq. (2), $k_{12} = 6.7 \times 10^{-9}$ yr⁻¹, $k_{23} = 5 \times 10^{-14}$ cm³ molecule⁻¹ yr⁻¹. **3:** CH₃ from eq. (2b), rate parameters as in **2. 4:** C₂H₆ from eq. (5), $k_{23} = 1 \times 10^{-12}$ cm³ molecule⁻¹ yr⁻¹, $k_3 = 5 \times 10^{-3}$ yr⁻¹. **5:** C₂H₆ from eq. (5), $k_{23} = 1 \times 10^{-12}$ cm³ molecule⁻¹ yr⁻¹, $k_3 = 1 \times 10^{-3}$ yr⁻¹. Cross-hatched area is the domain of C₂H₆ reported concentrations.

Solution of (1), on next page:

Reaction Rate Parameters k_i : From the very extensive data base of experimentally and theoretically determined values of k_{12} , k_{23} , and k_3 , their ranges are: k_{12} from 9.5E-09 to 3E-04 yr⁻¹; k_{23} from 5.1E-19 to 1.3E-03 cm³ molecule⁻¹ yr⁻¹; k_3 from 1.3E-80 to 3E+0 yr⁻¹. The ranges are very large and values $<1.5 \times 10^{-10}$ yr⁻¹ correspond to reaction half-lives longer than the age of the Solar system, 4.55×10^9 yr. The rate constants cannot be chosen arbitrarily to make the equations produce present-day concentrations of CH₄, CH₃, and C₂H₆ in Titan's atmosphere. The value that agree with the present day concentrations (Fig. 1) are $k_{12} = 6.7E-09$ yr⁻¹, $k_{23} = 5E-14$ to 1E-12 cm³ molecule⁻¹ yr⁻¹, and $k_3 = 1E-04$ to 1E-03 yr⁻¹.

Present-Day Abundance: Present day abundances of CH_4 , CH_3 , and C_2H_6 in Titan's atmosphere are given in Table 1.

Table 1. Gas abundances in Recent Titan's atmosphere

Gas	Abundance		- References
	molecules cm ⁻³	kg	- References
CH ₄	1.31×10 ¹⁹	6.16×10 ¹⁷	[4], [5], [6], [2]
CH ₃	1.05×10^{12}	4.62×10^{10}	[7]
C_2H_6	1.81×10 ¹³ -		
	1.67×10^{15}	1.60×10^{12} -	[8], [9], [7].
Mean	8.46×10^{14}	1.48×10^{14}	[10]
Geom.	1.74×10^{14}		

Near-Steady-State Concentrations: In the course of Titan's cooling since accretion, thermal escape of CH_4 slowed down, approaching the present-day atmospheric mass [2]. This suggests that at the present temperature of about 94 K, Titan's atmosphere has attained a near-steady state. The steady state or asymptotic solutions of eqs. (1)-(3) and (2a)-(3a) give the same results [11]:

From (2), (2a), (2b),

(4)
$$[CH_3]_{ss} = \sqrt{\frac{k_{12}[CH_4]_{ss}}{k_{23}}}$$

From (3), (3a),

(5)
$$[C_2H_6]_{ss} = \frac{k_{23}[CH_3]_{ss}^2}{k_3} = \frac{k_{12}[CH_4]_{ss}}{k_3}$$

The computed concentrations from the preceding two equations and k_i values cited above are given in Table 2.

(1a) $[CH_4] = [CH_4]_{ss} + ([CH_4]_0 - [CH_4]_{ss})e^{-k_{12}t}$ where $[CH_4]_0$ is the initial and $[CH_4]_{ss}$ steady-stater concentration (Fig. 1)

Solution of (2), from [11]:

$$\frac{d[CH_3]}{dt} = k_{12}[CH_4]_{ss} + (k_{12}[CH_4]_0 - k_{12}[CH_4]_{ss})e^{-k_{12}t} - k_{23}[CH_3]^2$$
(2a)
$$[CH_3] = -\frac{1}{k_{23}}\frac{(pCk_{12}/2)e^{-k_{12}t/2}I_{\nu}'(Ce^{-\lambda t/2})(qC\lambda/2)e^{-\lambda t/2}I_{-\nu}'(Ce^{-\lambda t/2})}{pI_{\nu}(Ce^{-\lambda t/2}) + qI_{-\nu}(Ce^{-\lambda t/2})}$$

where C and v are constants defined in terms of k_i , [CH₄]₀, [CH₄]_{ss}, and constants q = 1, p = -1.

Alternatively, in the regime where the CH₄ concentration is near steady-state, $[CH_4]_{ss}$, after ~5×10⁵ yr (Fig. 1), $d[CH_2]$

$$\frac{d[C_{6}H_{6}]}{dt} = k_{12}[CH_{4}]_{ss} - k_{23}[CH_{3}]^{2}$$
(2b) $[CH]_{3} = \sqrt{\frac{k_{12}[CH_{4}]_{ss}}{k_{23}}} \tanh(\sqrt{k_{12}[CH_{4}]_{ss}k_{23}}t)$, and substituting the latter in (3), we have
$$\frac{d[C_{6}H_{6}]}{dt} = k_{12}[CH_{4}]_{ss} \tanh^{2}(\sqrt{k_{12}[CH_{4}]_{ss}k_{23}}t) - k_{3}[C_{6}H_{6}]$$

(3a) The solution of the preceding equation is, finally, $[C_2H_6] = f(t) + CONST \times exp(-k_3t)$

$$f(t) = \frac{k_{12}[CH_4]_{ss}}{ac(a+2c)} \left[a^2 e^{2ct} F\left(1, \frac{a}{2c} + 1; \frac{a}{2c} + 2; -e^{2ct}\right) - (a+2c) \left(a F\left(1, \frac{a}{2c}; \frac{a}{2c} + 1; -e^{2ct}\right) + a \tanh(ct) - c\right) \right]$$

where $a = k_3$ yr⁻¹; and $c = (k_{12} \cdot [CH_4]_{ss} \cdot k_{23})^{0.5}$ yr⁻¹, and F or Gauss's function ${}_2F_1$ is the hypergeometric series. And: CONST = -f(t = 0).

Rate pa-C₂H₆ Fig. 1 Value CH₄ (molecule/cm³) CH₃ (molecules/cm³) rameter (molecules/cm³) Calc. Calc. Rep. Rep Calc. Rep. k escape Variable [2] 1. CH4 8.76×1010 1.31×1019 1.31×1019 k_{12} ×[CH4]ss 6.7×10⁻⁹ 2. CH3 k_{12} 1.35×10^{12} eq. (2) *k*₂₃ 5.0×10⁻¹⁴ 1.15×10¹² 6.7×10⁻⁹ 3. CH₃ k_{12} 0.94×10^{12} 5.0×10⁻¹⁴ eq. (2b) k23 1.0×10⁻¹³ k23 $1.3 {\times} 10^{13}$ 4. C₂H₆ 1.81×10^{13} 1.0×10^{-3} k_3 to 1.0×10⁻¹² k_{23} 1.67×1015 5. C₂H₆ 1.3×10^{15} 1.0×10⁻⁴ k3

Table 2. Calculated and reported CH₄, CH₃, and C₂H₆ concentrations in present-day Titan's atmosphere.

References: [1] Gilliam A.E. et al. (2015) *Astrobiol. Sci. Conf. 2015 Abs.* #7772. [2] Gilliam A.E. and Lerman A. (2014) *Planet. Space Sci.*, *93-94*, 41-53. [3] Atreya S.K. et al. (2006) *Planet. Space Sci.*, *54*, 1177-1187. [4] Lorenz A.D. et al. (1999) *Planet. Space Sci.*, *47*, 1503-1515. [5] Griffith C.A. et al. (2003) *Science, 300*, 628-630. [6] Jacquemart D. et al. (2008) *Planet. Space Sci.*, *56*, 613-623. [7] Wilson E.H. and Atreya S.K. (2004) J. Geophys. Res., 109, E06002, doi :10.1029/2003JE002181. [8] Gladstone G.R. et al. (1996) Icarus, 119, 1-52. [9] Yung Y.L. and DeMore W.B. (1999) Photochemistry of Planetary Atmospheres. Oxford Univ. Press. [10] Vinatier S. et al. (2007) Icarus, 188, 120-138. [11] DLMF (2015) NIST http://dlmf.nist.gov/