Modeling 2D transport of CO in protoplanetary disks:

What ends up where?
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| The spatial distribution of the abundances of major

volatile species (e.g., water, CO) in protoplanetary disks

n ro u c I 0 n is expected to change dramatically during the disk’s 1-10
Myr lifetime. Astrochemical models indicate volatiles
freeze out in cold, dense regions while remaining in the
gas-phase in hot, tenuous, and/or UV-irradiated regions
[e.g., 1]. At the same time, various mechanisms can
transport large amounts of gas (through diffusion and
advection) and solids (gravitational settling, turbulent

mixing, and radial drift) in the vertical and radial
directions [2,3].

Recent observations of mm-dust, molecular CO and
y . Distance in AU various other tracers [4,5,6] hint at a common narrative
— in which: (1) volatiles are depleted from disk surfaces and
presumed to be locked up in solids at the disk midplane;
(11) these solids then drift inward, redistributing the
volatiles and potentially enriching the planet formation
zone in carbon and oxygen [7].
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Fig. 1: Cartoon of a young protoplanetary disk. Planet formation takes
place in the (cold) midplane, while CO emmision tends to trace warmer

layers closer to the disk atmosphere. Transport of solids and gas is
prevalant throughout the disk.

We have developed a new global, two-dimensional model that is capable of

simulating the transport and interaction between volatile species (both in the form
of vapor or ice), small microscopic dust grains, and larger coagulated pebbles in a

simultaneous and self-consistent manner.

The method is based on treating these three ingredients separately, but not
independently (Fig. 2). Different interactions between the components are
included, such as freeze-out of CO molecules onto small dust, evaporation of CO ice
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Model S0: When solids are not allowed to move, turbulent transport of vapor followed
by rapid freeze-out (the “cold finger' effect [8,10]) removes CO molecules from the disk

atmosphere. A geometrically thin layer of ice-rich small grains forms below the surface
snowline, and no new ice is added to the larger pebbles deeper down in the disk.
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Fig. 4: Initial conditions for ¢=0.
showing the different components in
our model. Top panel: Gas-phase
CO is present in the inner disk and
atmosphere. In the midplane,
pressure & temperature are such
that CO molecules freeze out in the
outer disk. A disk of pebbles is
present in the outer disk. Bottom
panel: Small grains are everywhere;
but their ice-content (F;.) is larger
in regions where CO has frozen out.
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Model P1: When small grains are allowed to move, the depletion seen in model SO

TABLE 1
SUMMARY OF MODEL RUNS.

practically disappears as ice-rich dust dust particles replenish the CO vapor in the
astmosphere. However, small grains are accreted by the pebbles in the midplane,
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Fig. 2: Conceptual model of the hybrid approach. Locally, CO vapor,
small dust grains, and pebbles (and their ice) interact in various ways. '
Globally, transport of gas-phase CO and small dust is calculated on a 2D Fig. 3: CO molecules interacting with the surface of a dust grain.

resulting in some removal of small grains & CO vapor after 1 Myr. In this case, the

Vapor diffusion depletion traces the location of the pebble disk.
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grid while pebbles are modeled as Lagrangian tracer particles. Based on Fig. 1 of Krijt et al. 2016 [10].

Conclusions/outlook

We introduce a novel “hybrid’ approach for modeling 2D transport of
volatile species and solids in protoplanetary disks. The method is
designed to intuitively connect several key observables: (1) vapor
abundances in the upper parts of the outer disk; (2) vapor abundances
close to, and inside of the midplane snowline; (3) the radial extent of the
pebble disk; and (4) the distribution of small, microscopic grains. Solving
the vapor abundance in two dimensions is critical for comparing to
observations, as different tracers/wavelengths probe different layers of
the protoplanetary nebula [e.g., 11].

By creating synthetic images of our model predictions, and connecting
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Model C0: When pebbles are allowed to drift/migrate radially, the story changes again.
The pebbles are not around for long enough to act as a sink for CO in the outer disk.
Instead, they drift through the midplane snowline and release new CO vapor in the
inner disk, which subsequently diffuses in all directions. Outward mixing and freeze-out

dramatically increases the ice-content of the small grains just outside the midplane
snowline.
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