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‘Motivation and Key Questions
‘0 What chronology, compositional variability, and record of climate change is expressed
in the stratigraphy of the Polar Layered Deposits of Mars? [1]

-

Is it possible to detect a record of astronomically forced climate in the stratigraphy of
the NPLD using the latest available data (DTM) and methods?
2. What is the nature of that record, and what does it imply about the history of the NPLD?
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Summary
o We use wavelet analysis on stratigraphic profiles of exposed layers from a trough wall to

search for periodicities in the stratigraphy and compare them with those in Mars'’
insolation record

The ratios of the stratigraphic periodicities are systematically lower than that in the
insolation, suggesting a non-linear time-depth relationship and variable deposition
Simple model of climate-controlled stratigraphic accumulation provides a plausible
depositional scenario with variable ice deposition rates
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Research into this connection relies on the search for periodicities in virtual “ice cores” that match those of the insolation
record [5-9]. Most analyses of the brightness of exposed layers agree that there is a periodic wavelength of 25-30 m in the

upper 300-500 m of the NPLD [5-8], but brightness is influenced by a sublimation lag over the exposures [10-12].

010 0.2 0.14
I/F

5 10 15 20 25 30 35
Slope ()

E 10123
Protrusion (m)

We use wavelet analysis to search for periodicities in stratigraphic columns of three different
properties of the exposed layers: Layer protrusion, Local slope, and Brightness; and we

compare these to the periodicities of the historical insolation at the north pole of Mars.

Interpretation: Comparison with accumulation model

Analysis and Results :
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1. Is it possible to detect a record of astronomically forced climate in the stratigraphy of the NPLD? * Dust rates have little effect
Yes, although systematically lower periodicity ratios in the stratigraphy compared to the insolation forcing signal suggest a non-linear - —-.
relationship between the cyclic climatic variations and the geologic record. . . S—
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A variable ice accumulation rate is required, but variability of dust accumulation is not. Qur data supports the CCS model as a plausible

scenario for the accumulation history of the NPLD and its connection to astronomically-forced climate.

The CCS model simulates accumulation by adding ice and dust deposition rates that depend on surface
temperatures, which themselves are dependent on the time-varying insolation function [14).
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