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Introduction: High-resolution near-infrared obser-
vations of carbon monoxide (CO) gas in absorption
have been shown to enable precise comparisons be-
tween carbon and oxygen isotopic reservoirs toward
low-mass (solar-type) young stellar objets (YSOs)
within ∼ 1 kiloparsec (kpc) of the Sun [1-3]. Results
with such observations have revealed signatures of CO
self shielding – supportive evidence for this process
on disk surfaces [2,3,4] – and significant heterogene-
ity in [12CO]/[13CO], with possible interplay between
CO ice and gas reservoirs as a cause [3,5,6]. Precise
ratios of [12C18O]/[12C17O] have also been used to ar-
gue for supernova enrichment in the early solar system
[7], and comparison between low-mass binary systems
and embedded protostars suggest carbon isotopic ho-
mogeneity within a few hundred AU [8].

Here we present results from our ongoing obser-
vational survey of CO isotopologues toward massive
YSOs along a galactic gradient. Unlike their low-mass
counterparts, massive YSOs are observational tracers
of regions with high-UV fluxes, span a larger obser-
vational range in Galactocentric radius (RGC), and
enable robust comparisons to other carbon reservoirs
along the same lines of sight. These targets thereby
provide robust observational comparisons with solar-
type YSOs, helping to shed light on key chemical
reservoirs involved protoplanetary and prebiotic evo-
lutionary pathways.

Observations and Methods: We have thus far ob-
served 14 massive YSO targets with Keck-NIRSPEC
(R∼ 25, 000). Targets span in RGC from 4.5 to 9.7 kpc
and range in luminosity from ∼ 1×103 to ∼ 4.7×105

LSun. Fundamental (v = 1−0) and first overtone (v =
2 − 0) rovibrational spectra were reduced using our
customized IDL pipeline (example, Figure 1). Equiva-
lent widths (Wν) for each isotopologue line were com-
puted using polynomial + Gaussian fits (sample fits,
Figure 1). For 12C18O and 12C17O lines, column den-
sities (NJ ) were calculated directly using the optically
thin relation, Wν = (πe2/mec

2)fJNJ [9], with fJ
representing the absorption oscillator strength for the
J th transition. A curve of growth (example, Figure 2,
top) relatingWν toNJ , was used in conjunction with a
rotational analysis (example, Figure 2, bottom) to find
the best-fit Doppler broadening parameter (b) for each
YSO; this b was then used to derive NJ values for the
12CO and 13CO lines. Total column densities for each
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Figure 1: Portions of CO fundamental rovibrational spectra
for massive YSO, MonR2 IRS3. Representative absorption
lines are marked. Colored model fits are shown overlaid on
the spectral lines. (Top): Fundamental band (v = 1 − 0)
band. (Bottom): First overtone (v = 2 − 0) band; several
optically thin 12CO lines are marked.

isotopologue were then found using the best-fit b and
the derived rotational temperatures.

Results and discussion: Derived ratios of
[12CO]/[13CO] for the four fully analyzed massive
YSOs thus far – AFGL 2136 [10], MonR2 IRS3,
NGC 7538 IRS9, and W3 IRS5; RGC from 6.1 to 9.7
kpc – are shown in Figure 3, which plots 12C/13C
against RGC. For the massive YSOs, we find that
the [12CO]/[13CO] derived from the cold gas (T ∼5
to 60 K) consistently follows the predicted Galactic
trend for [12C/13C], unlike the significant dispersion
previously found in the low-mass sources at ∼ 8 kpc
[3,8]. Further, the cold-gas [12CO]/[13CO] are con-
sistently lower than the solid-phase [12CO2]/[13CO2]
[11] for the same lines of sight, which suggests
that CO2 may not originate directly from CO reser-
voirs as previously assumed [12]. For massive
YSOs with two-temperature distributions, warm-gas
[12CO]/[13CO] ratios are consistently higher than
those from the cold gas, a trend we also see in the
low-mass targets, suggesting that there may be similar
temperature-dependent CO fractionation pathways for
both high- and low-mass YSOs. Our [12CO]/[13CO]
ratio for W3 IRS5 (103 ± 4) is significantly higher
than that derived from radio observations of 12C18O
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Figure 2: Analysis for massive YSO MonR2 IRS3. (Top):
Curve of growth showing the best-fit b value (8 km/s), as
well as other nearby values for comparison. (Bottom): Ro-
tational analysis for MonR2 IRS3. Error bars are 1σ, EJ

is the energy of the Jth rotational state, k is the Boltzmann
constant.

and the doubly-substituted 13C18O (66± 4) [13]. This
discrepancy could be due to a higher photodissociation
rate for 12C18O [14]. We find a mass-independent
trend in oxygen isotopes for W3 IRS5 (Figure 4),
suggesting that CO self-shielding could affect the
evolution of oxygen isotopes in protoplanetary disks
surrounding both massive and solar-type YSOs.

Conclusions: Our high-resolution observations of
CO toward massive YSOs across the Galaxy thus far
show ratios [12CO]/[13CO] with significantly less dis-
persion off the predicted Galactic trend than low-mass
YSOs. We find signatures of CO self-shielding in both
high- and low-mass YSOs, and similar trends between
beteween CO ice and gas reservoirs. Together, our re-
sults suggest that massive YSOs may follow dissimilar
pathways in certain phases of evolution in protoplane-
tary carbon and oxygen as compared to solar-type sys-
tems. Further, our observational suggestion that CO2

may not originate from CO should be considered in
evaluating carbon-based pathways for protoplanetary
and prebiotic compounds.

Figure 3: Ratios of 12C/13C vs. RGC (kpc) for our massive
YSOs in this study (boxed, RGC∼6 to 10 kpc), data from
the literature [15-19], and COGas from the high-resolution
CRIRES survey at ∼ 8 kpc [2,3,8]. Massive YSO warm-
and cold-gas values are shown as red and blue diamonds,
respectively. CO2 ice values are green stars [9]. Local ISM
(∼ 68) and solar system (∼ 87) values are also at ∼ 8 kpc.
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Figure 4: Three-isotope oxygen plot showing low- and high-
mass YSOs compared to the ISM. Mass-independent trends
are seen in the low-mass YSOs VV CrA(N) and HL Tau [3],
and the massive YSO W3 IRS5. Error ellipses are 1− σ.
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