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Introduction:  The primary science objectives of 

the Gravity Recovery and Interior Laboratory 
(GRAIL) mission are to determine the structure of the 
lunar interior from crust to core and to advance the 
understanding of the thermal evolution of the Moon 
[1,2]. These objectives are to be achieved by producing 
a high-quality, high-resolution map of the gravitational 
field of the Moon. The concept of the GRAIL mission 
and its measurements is based on the successful 
GRACE mission which is mapping the gravity field of 
the Earth [3]: the distance between two co-orbiting 
spacecraft was measured precisely using a Ka-band 
ranging system [4], augmented by tracking from Earth 
using the Deep Space Network [5].  

The GRAIL mission consisted of two separate 
phases: a primary mission phase, which lasted from 
March 1, 2012 until May 29, 2012, where the space-
craft were at an average altitude of 50 km above lunar 
surface, and an extended mission phase, which lasted 
from August 30, 2012, until December 14, 2012, dur-
ing which the average spacecraft altitude was 23 km. 
In the latter part of the extended mission this altitude 
was lowered further to 20 km (November 18) and fi-
nally 11 km (December 6). Two different analysis 
groups have processed the GRAIL data: one at the Jet 
Propulsion Laboratory (JPL) [6,7], and one at NASA's 
Goddard Space Flight Center (GSFC) [8,9]. Here, we 
present the latest global model developed by the GSFC 
group, a model of degree and order 1200 in spherical 
harmonics (equivalent block size of 4.5 km by 4.5 km 
at the lunar equator). 

Methods:  We analyzed the GRAIL data using our 
GEODYN II software [10]. The data are divided into 
continuous spans of time called arcs, which are about 
2.5 days long and centered around angular momentum 
desaturation events. We numerically integrate the 
equations of motion for both satellites simultaneously, 
using high-precision, high-fidelity models of the forces 
acting on the spacecraft and of the measurements. The 
force models used include a lunar gravity field model, 
degree-2 potential Love numbers k2m, third-body per-
turbations of the Sun and planets, and solar and indi-
rect (planetary) radiation pressure. We also forward-
model the effects of dissipation in the Moon because 

this changes the gravitational potential [11]. The 
measurement modeling uses high-precision corrections 
for relativity, station motion, and troposphere and ion-
osphere-induced media delays. We then compare com-
puted measurements with the actual measurements, 
and use a least squares batch estimation approach [12] 
to adjust parameters describing the forces and meas-
urements.  

We conveniently divide the adjusted parameters in-
to arc parameters (parameters that only influence the 
measurements within a certain arc, such as initial states 
for the spacecraft) and common parameters (parame-
ters that affect all measurements, such as the coeffi-
cients of the spherical harmonic expansion of the grav-
itational potential). Our arc parameters include the 
initial states (position and velocity) of both satellites, 
and empirical accelerations. We include constant ac-
celerations and accelerations with a period of one or-
bital revolution, in the radial, along-track and cross-
track directions. We estimate such a set per satellite 
every quarter orbit, and we apply time-correlation to 
ensure smooth transitions between periods [13]. Our 
common parameters include the spherical coefficients 
for a degree and order 1200 model, k2m Love numbers, 
the lunar gravitational parameter GM, and a scale fac-
tor for the forward model of interior dissipation [11].  

The data used in our processing are 2-way S-band 
tracking data from the DSN, and the precise KBRR 
data. We weigh the DSN data at 0.12 mm/s (close to its 
expected noise level of 0.1 mm/s). KBRR data for the 
primary mission are weighted at 0.03 micron/s, and 
those for the extended mission at 0.05 micron/s. DSN 
data has a sample time of 10 s, that of primary mission 
KBRR data is 5 s, and that of extended mission KBRR 
data is 2 s.  

Solar radiation pressure is one of the main forces 
acting on the GRAIL satellites.  Early in the mission it 
was realized that the timing of eclipses was especially 
important, since a mismatch could introduce a signal of 
several tenths of microns/s into the KBRR residuals 
[13]. Despite careful modeling, there were still periods 
during which the eclipse timing was slightly off in our 
processing, which resulted in high KBRR residuals in 
localized areas at the selenocentric locations of eclipse 
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transitions. A careful re-analysis of the eclipse geome-
try, together with careful editing of the data, has im-
proved the eclipse timings, resulting in an improved 
KBRR fit, particularly in the eclipse transition regions. 

The high degree and order global models that we 
develop from the GRAIL data require the estimation of 
a large number of parameters. Our solution strategy is 
based on QR factorization [14], and at our current 
model resolution this is computationally intensive. We 
have therefore turned to using the supercomputers of 
the NASA Center for Climate Simulation (NCCS) at 
NASA/GSFC for the inversions. 

 

 
Figure 1: Power and error spectra for the GRGM1080B 
and GRGM1200A models. The power spectra show 
results for the constrained and unconstrained models. 
The RMS power for the coefficient differences between 
the models is also shown. 

Results: We have processed all primary mission 
and extended mission data and determined a global 
model of degree and order 1200, named GRGM1200A. 
For this model, we used a Kaula rule of 36x10-5/l2 for 
degrees l larger than 600. Figure 1 shows the power 
and error spectra of this solution, along with those of 
the GRGM1080B model, a degree and order 1080 so-
lution that served as the starting model. The errors for 
the lower degrees for GRGM1200A have improved 
considerably, likely due to the use of radial accelera-
tions. For both models shown in Figure 1, the error 
curves intersect the power curves. We stress that both 
models are calibrated in such a way that the formal 
residual statistics from the covariance matrix match the 
observed statistics, using a scaling factor derived from 
the square-root information filter [9,14]. This scaling 
factor was 1.79 for GRGM1080B, and it decreased to 
1.64 for GRGM1200A, indicating more realistic for-
mal errors for the new model. Model differences agree 
reasonably well with the scaled formal errors. 

Figure 2 shows the correlations between gravity 
and gravity derived from topography (using Lunar 

Orbiter Laser Altimeter, LOLA, data [15]). The new 
model GRGM1200A shows improvements over the 
GRGM1080B model, made clear in the inset of Figure 
2 which zooms in on the degree range l=500-900.  

The fit to the data also improve with the new mod-
el. Data fits for the late extended mission (December 
2012, when the spacecraft were at their lowest altitudes 
over the lunar surface) are still higher than those for 
the rest of the mission, indicating that further im-
provements are possible. These will be pursued. 

 

 
Figure 2: Correlations between gravity from LOLA-
derived topography [15] and the GRGM1080B and 
GRGM1200A models. 
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