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Introduction:  Comets are the most primitive bod-

ies in the solar system. They retain a cosmo-chemical 
record of conditions in the solar nebula when the plan-
ets were forming, 4.5 billion years ago.  While accu-
rate measurements of the gas loss rate from comets are 
possible under favorable conditions even from Earth, 
estimates of the dust loss rate so far have been much 
more uncertain. Multi-parametric models are needed to 
extract global dust parameters from the dust features of 
comets (e.g. coma, tails and trails) observed from 
ground and Earth orbiting telescopes, and it is often 
difficult to establish the uniqueness of these model 
results. Past space missions had on board instruments 
devoted to the measurement of the dust flux. Since all 
these missions were fast flybys, it was impossible to 
disentangle the dust grains coming directly from the 
nucleus from those reflected back by solar radiation 
pressure [1,2]. The latter component could explain all 
or part of the excess of mm-sized particles observed 

during flybys at 1P/Halley [3] and at short-period 
comets 26P/Grigg-Skjellerup, 81P/Wild 2 and 
9P/Tempel 1 [4-6].  

An even more severe bias could affect all estimates 
of dust to gas (d/g) ratio obtained so far in comets. The 
d/g measured in 1P/Halley was close to 2 [5], but this 
number is valid up to the largest mass of about 1 g 
observed by the DIDSY detector (actually, this largest 
mass grain was invoked to explain the spacecraft pre-
cession-inducing impact that occurred just before clos-
est approach). We expect that 1P/Halley was then 
ejecting much larger masses, and the d/g ratio strongly 
depends on the actual largest grain ejected in the coma. 
Since it was impossible to fix the size distribution be-
tween 1 g and the unknown largest ejected mass, we 
cannot exclude d/g values higher than 10 or even 50. In 
this paper we show that for comet 67P/CG we can dis-
entangle the two families of ejected grains (direct and 
reflected), and extract the dust size distribution up to 
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the largest ejected grain, obtaining for the first time an 
accurate estimate of the total dust loss rate from the 
nucleus. 

 
Methods: Critical measurements for understanding 

the process of accretion and the refractory to volatiles 
ratio in the solar nebula are being obtained by the 
Grain Impact Analyzer and Dust Accumulator 
(GIADA) experiment onboard ESA’s Rosetta space-
craft, now orbiting comet 67P/Churyumov-
Gerasimenko (67P/CG). GIADA measures the mass, 
momentum and velocity of individual grains, providing 
the dust loss rate over three orders of magnitude in 
mass for grains from tens to hundreds of microns in 
diameter.  GIADA consists of three subsystems: 1) the 
Grain Detection System (GDS) to detect dust grains as 
they pass through a laser curtain, 2) the Impact Sensor 
(IS) to measure grain momentum derived from the 
impact on a plate connected to five piezoelectric sen-
sors, and 3) the MicroBalances System (MBS); five 
quartz crystal microbalances in roughly orthogonal 
directions providing the cumulative dust flux of grains 
smaller than 10 microns. GDS provides data on grain 
speed and its optical cross section. The IS grain mo-
mentum measurement, when combined with the GDS 
detection time, provides a direct measurement of grain 
speed and mass [7, 8]. These combined measurements 
characterize single grain dust dynamics in the coma of 
67P/CG. 

 
Results: The first grain was detected on 1 August 

2014 at 814 km from the comet nucleus. Between then 
and 13 September 2014 GIADA detected 35 grains 
ranging in mass from ~ 5 x 10-10 to 8 x 10-8 kg.  Includ-
ing complementary data from the OSIRIS narrow an-
gle camera, the dust mass loss was calculated over an 
additional three orders of magnitude in mass, extend-
ing the ejected dust grain sizes up to 2 cm.  Combined 
with data from the MIRO and the ROSINA instru-
ments onboard Rosetta we find a dust/gas mass ratio of 
4 +/- 2 averaged over the sunlit nucleus surface. The 
dust to gas ratio may change as the comet approaches 
closer to the Sun.  
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