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Introduction: The Tissint meteorite
has been the subject of multiple
studies since its fall in the Moroccan
desert during 2011, including
characterizing its shock phases, melt
inclusions, radiogenic isotopes, and °
hydrogen isotopes [1-4]. We present
the first summary of Tissint’s igneous *
petrogenesis from measurements ’
done on two thin sections (Tissint, 1
and Tissint, 6) obtained from ASU’s  °
Center for Meteorite Studies
collection.

Tissint is an olivine-phyric shergottite (Fig. 2-3). Here we
show that its major and trace element chemistry is
unigue compared to previous shergottites.

Olivine major elements:
Mg# varies from 81 to 29 - largest range, most Fe-rich
rims of any olivine-phyric shergottite.

Coarse-grained olivines are glomerocrysts (Fig. 4)

Thin sections composed of 27 and 24% olivine, implying
7-10% olivine is cumulate, may represent antecrysts [5]
Coarse grained olivines free of chromite inclusions,
olivine-phyric shergottites
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Fig. 4 — olivines with irregular inclusions and internal

Fig. 1: Tissint sample at ASU’s Center for boundaries, likely glomerocrysts (both images 1.5 mm wide)

Meteorite Studies (Lawrence Garvie) Pyroxene major elements:

Methods: 2 sections of Tissint were e Range from pigeonite to augite
characterized through petrography e Overlap other olivine-phyric shergottites (Fig. 5)

and electron microprobe at the * Make up 52% of Tissint on average (Fig. 6)
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Fig. 2: Thin section
Tissint, 1 shown in
plane polarized
light, cross

Fig. 3: Thin section
Tissint, 3 shown in
plane polarized
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Rare Earth Elements (Fig. 8)

 Merrilite is the dominant REE carrier

* Overlaps with depleted shergottites in isotopic compositions [2], but overlaps with
intermediate shergottites (EETA-79001A) in REE [11]

* No evidence of open-system processes during crystallization or later weathering

* Eu anomaly allows calculated fO, of QFM-2.4 [10]
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T Implications for magmatic processes and Tissint’s origin
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Maskelynite major
elements:

20-22% of Tissint
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olivine-phyric shergottite"
maskelynites (Fig. 7)
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Olivine— chromite —maskelynite + pigeonite —augite— groundmass
Olivine core Mg # implies near equilibrium with the martian mantle

o Slightly more Fe-rich than Y-980459 or NWA 5789 [18-19]
Olivine resided in a cumulate pile or on magma chamber walls where phenocrysts merged
into glomerocrysts & Mg # homogenized
Pyroxene minor elements record decreasing pressure/evolving melt composition
Crystallization proceeded through highly evolved (Fe-rich) groundmass before final melt
crystallized
Oxygen fugacities calculated from both minerals [20] and REE-in-pyroxenes are low, from
QFM-2.4 to QFM-4.
Could represent an olivine-rich (closer to equilibrium with the mantle) version of depleted
basaltic shergottite QUE 94201 [15]

Tissint is a reduced, depleted shergottite derived from an active martian magmatic system



