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A key determinant for the interior structure and 

thermal evolution of planetary bodies is the thermal 
conductivity, kth(z), of the “megaregolith” (porous 
outer layer of accumulated ejecta and impact-fractured 
material [1, 2].  Most studies of planetary interiors or 
topographic relaxation rates assume a thermal conduc-
tivity appropriate for solid rock or ice applies all the 
way up to the surface, whereas the surface thermal 
inertia values measured for most satellites and aster-
oids indicate a conductivity 103-104 less.  

We know from remote measurements of thermal 
inertia on icy satellites that the surface value of kth is 
very low, typically 0.001 Wm-1K-1 [e.g. 3,4]. And from 
studies of lunar regolith we know kth can be 10 times 
greater just a few cm deeper due to a decrease in po-
rosity from 60-70% at the surface to typical values (30-
40%) for random close-packed particles [5]. But 0.01 
Wm-1K-1 is still less than 1% of the conductivity of 
solid ice, and any further increase due to compaction 
may require lithostatic pressure >1 MPa [6,7]. 

The main obstacle to better estimates of megarego-
lith thermal effects is the paucity of information about 
its structure and composition.  But one mitigating fea-
ture of cold airless regolith is that kth is largely inde-
pendent of particle size at any depth where mechanical 
forces dominate van der Waals forces, i.e. for z>10m 
on Callisto [W14a]. The size dependence of kth for 
regolith on the Moon and Mars is due to the radiative 
and/or gas components of conduction, but these are 
negligible in the upper 10 km of most outer solar sys-
tem bodies.  The thickness of megaregolith is another 
important unknown, with estimates ranging from 100m 
to 10km [2,8,9]. But we note that even a 100m-thick 
layer can create a significant ΔT (Fig. 1 and Fig. 2). 
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Figure 1 – Example model calculations for Callisto.    

(Top) Model-calculated profiles of thermal conductivity,  
kth(z), in the upper 10 km using the MaxRTC Model [Wood, 
2013, W13] for cases representing the wide range of possi-
ble physical structures: a nonporous solid (blue line), a ve-
sicular solid – i.e. isolated pores – (green line), and unce-
mented particles – i.e. nearly isolated particles (black line). 
Both the particulate and vesicular cases use the same poros-
ity profile, Φ(z) (red line), illustrating that the continuity of 
the solid material is much more important than its porosity 
[10].  All cases include a T-dependent solid conductivity.   

Calculated surface conductivity is 0.006 W/m/K for a 
20 µm particles and Φ=60% (surface values are indicated by 
circles on the top axis), yielding a thermal inertia of 63 J m-2 
s-1/2 K-1 – in line with observed values [3].  Particle size in-
creases linearly with depth, but results are not sensitive to 
this assumption (see text).  We assume Φ=30% at z=1m and 
calculate the decrease with depth based on data for hydro-
static compaction of granular ice [6,15].     

(Bottom) Temperature profiles corresponding to the 
conductivity profiles above for a heat flow of 3 mW/m2 [11] 
and an average surface temperature of 110 K. For compari-
son, a profile used to model crater topography relaxation 
[12] is also shown (dashed red line). 
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Fig. 2.  Left & Above:  MaxRTC model calcula-
tions of kth(z) (plot C) and T(z) (plot E) for as-
sumed profiles of particle size and porosity (plot 
A) and using material properties of basalt. Poros-
ity is consistent with recent GRAIL results [16].  
Black lines in plots C and E are for vesicular ba-
salt with the same porosity as the particulate cases 
(#1 and #2), but assuming a continuous solid 
(fsc=1). Surface kth and thermal inertia (“T.I.”) are 
calculated using the same model but with higher 
porosity (56%) for uppermost 2 cm; these values 
are consistent with LRO Diviner observations 
[17]  
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