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Introduction. Beyond a planet’s first-order physi-
cal properties of radius, mass, and magnetic field are 
the properties of its geoid and shape ellipsoids (repre-
sented by spherical harmonic (SH) coefficients of de-
gree l = 2 and order m = 0, 1 and 2). Such information 
constrains the radial density and rheological structures 
of the interior but may also may shed light on past me-
chanical, orbital, and spin states of the planet. Esti-
mates of the 2nd-degree (l2) geoid have been obtained 
from the radio science experiment on the MErcury 
Surface, Space ENvironment, GEochemistry, and 
Ranging (MESSENGER) spacecraft [1].  Reliable es-
timates of the low-degree shape coefficients are not 
possible with data from the Mercury Laser Altimeter 
(MLA), as the highly eccentric MESSENGER orbit 
precludes data acquisition in the southern hemisphere. 
A second source of absolute planetary radii determina-
tion is radio frequency observations that measure Mer-
cury’s radius at the time and location of occultations 
[2]. Occultation coverage in the southern hemisphere, 
combined with MLA data, support a spherical harmon-
ic expansion of Mercury’s shape to degree and order 8, 
with the l2 estimate particularly reliable (Fig. 1).  

 
                    

Figure 1. (Left) Power spectral densities (PSDs) for the 
Moon and Mercury. Solid lines are shape, dashed lines are 
geoid. (Right) Northern hemisphere views of Mercury and 
lunar shapes. For Mercury, the contour interval = 0.1 km, 
range ~ ±1 km; for the Moon, the contour interval = 0.2 km, 
range ~ ±2 km. 0° longitude is at bottom. 

Here we compare Mercury’s l2 shape and geoid to 
their lunar counterparts. We consider reasons for the 
high correlation of Mercury’s l2 shape and geoid and 
propose a novel explanation based on Mercury’s 3:2 
spin-orbit resonance state. 

Lunar comparisons. It has been long known that 
the lunar l2 geoid is out of hydrostatic equilibrium [3,4] 
with respect to its current rotational and tidal poten-
tials. Larger than equilibrium values (Table 1) of the  
gravity coefficients, Clm, associated with polar flatten-
ing (J2 = -C20) and equatorial ellipticity (C22) are de-
scribed as “bulges,” and there has been a debate for 
more than a century [5] as to whether or not these are 
rotational and tidal relics of an early Moon possessing 
a higher spin rate and smaller semi-major axis. It is a 
significant challenge to find valid mechanisms that 
might maintain these “fossil” bulges as the Moon spun 
down and moved away from the Earth [6–8]. Mercu-
ry’s 2nd-degree spherical harmonic geoid coefficients 
are significantly farther from hydrostatic equilibrium 
than their lunar counterparts (Table 1, Fig. 1), a point 
evident [9] even from the poorly constrained coeffi-
cients estimated from the Mariner 10 flybys.  Thus the 
innermost planet offers another opportunity to test the 
hypothesis that a large (i.e., gravity dominated) sili-
cate-iron solar system body can preserve a record of its 
very early rotational and orbital history. 

 
Table 1. Ratios of ob-
served to upper-bound 
hydrostatic equilibrium 
values of l2 geoid (J2, 
C22) and   shape (j2, c22) 
coefficients of the Moon 
(Mo) and Mercury (Me).  

The shape power spectral density (PSD) for Mercu-
ry indicates excess power in l2 compared with other 
degrees (Fig. 1). The z- (short) axis of Mercury’s l2 
shape ellipsoid is closely aligned with the planet’s spin 

  Me Mo 

J2(Obs)/J2(Eql) 58 21 

C22(Obs)/C22(Eql) 73 8 

j2(Obs)/j2(Eql) 309 54 

c22(Obs)/c22(Eql) 412 9 
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axis (6° tilt vs. 27° for the Moon; Fig. 1), and the ellip-
soid axes in the equatorial plane are only modestly 
misaligned from the principal axes (-15°; cf. 37° for 
Moon; Fig. 1). Mercury’ l2 shape and geoid have a 
high correlation coefficient (0.96 vs. 0.61 for Moon). 
Furthermore, a low admittance (0.1; see Fig. 1) implies 
that Mercury’s l2 shape is largely compensated. Mercu-
ry’s l2 shape coefficients are not only farther from 
equilibrium than their lunar shape counterparts, but 
they are also farther from equilibrium than Mercury’s 
geoid. Given the high geoid/shape correlation and low 
admittance for l2, along with the presence of a 3:2 spin-
orbit resonance and its thermal consequences, the paths 
to the current states of hydrostatic disequilibrium may 
have been quite different for Mercury and the Moon. 

Thermal anomalies and compensation models.   
Because of Mercury’s 3:2 spin-orbit resonance, large 
orbital eccentricity (e), and near-zero obliquity, there 
are substantial temperature differences between the 
spin-axis poles (90° N/S) and the equator, and between 
0°E/180°E and 90°E/270°E (“hot poles” and “cold 
poles,” respectively) [10, 11]. Here we consider the 
hypothesis that parts of the l2 shape and geoid can be 
explained by subsurface thermal density anomalies re-
sulting from the propagation of these spatially varying 
surface temperatures into the interior. We note that l2 
accounts for ~95% of the spectral power of the surface 
temperature distribution. Capture of Mercury into a 3:2 
resonance is nearly certain at e between 0.2 and 0.41 
[12], and once captured the resonance is very stable 
[13]. The effects of chaotic variations in e [14], which 
mainly affect hot/cold pole temperature ratios, should 
likely be smoothed out in the subsurface. The tempera-
ture distribution will thus reflect the long-term mean 
value of e, close to the present value of 0.2056.  

A simple test of the thermal hypothesis assumes 
one-dimensional conductive temperature profiles an-
chored at the surface by hot (434 K) and cold (329 K) 
pole temperatures [11] but isothermal at the core-
mantle boundary. Converting temperature differences 
to density differences yields a geoid C22 close to  the 
observed value, depending on the choice of linear 
thermal expansion coefficient, αv/3.  To explore this 
idea further, we adopted an isostatic compensation 
model [15] to solve explicitly for crust-mantle bounda-
ry (Moho) relief (Airy compensation, δr20 or δr22) and 
lateral density variations representing the thermal 
anomalies  (Pratt compensation, δρ20 or δρ22).  The two 
parameters varied in the solution space were mean 
crustal thickness, Tc, and the thermal layer thickness, 
M, extending from the surface to an assigned isother-
mal depth. Additional parameters were held constant 
(e.g., crust and mantle densities).   

An example of the fraction of the c22 shape ex-
plained by the thermal layer is shown in Fig. 2. In this 
case the isothermal depth arbitrarily was set to 370 km, 
below which it is assumed that viscous flow has re-
moved lateral density anomalies. The difference be-
tween hot and cold pole [11] conductive temperature 
profiles was converted to a thermal term Tδρ22 using αv 

= 3×10-5 K-1 and averaging over M.  The magenta 
curves bound solutions satisfying the Tδρ22 constraint   
within ±3 kg /m3. We prefer solutions with Tc < ~100 
km [16], leading to a lower bound on M of  ~300 km, a 
Moho relief of ~1 km, and thus nearly 100% of shape 
support by the thermal layer. We note that 2/3 of the 
thermal mass anomaly is within 150 km of the surface, 
and an entirely conductive thermal regime is a plausi-
ble state for present-day Mercury [17].  

 
Figure 2. Fraction of c22 shape due to thermal anomalies 
(25%, 50%, 75% contours shown). Blank area contains phys-
ically implausible solutions. Color saturation at 100% (0%) 
indicates over-compensation by thermal layer (Moho relief). 
Magenta curves bound surface temperature constraint. 

Conclusions. Mercury is remarkably far from hy-
drostatic equilibrium compared with the Moon. The 
axes of the surface thermal ellipsoid must align with 
the axes of the geoidal ellipsoid (principal moments), 
but there are no a priori requirements for the shape el-
lipsoid to do the same. Here we demonstrate the plau-
sibility of one mechanism for support of Mercury’s 
shape that takes advantage of the existing geoid-
constrained thermal geometry. 
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