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Introduction:  Characterizing the thermal infrared 

(TIR) spectral mixing behavior of compacted fine-

grained mineral assemblages is necessary for facilitat-

ing quantitative mineralogy of sedimentary surfaces 

from spectral measurements. Previous researchers have 

demonstrated that TIR spectra from igneous and meta-

morphic rocks as well as coarse-grained (>60 micron) 

sand mixtures combine in proportion to their volume 

abundance [1][2]. However, the spectral mixing behav-

ior of compacted, fine-grained (<10 µm) mineral mix-

tures that would be characteristic of sedimentary depo-

sitional environments has received little attention. In 

spectral regions where the absorption coefficient is 

large, surface scattering should be reduced for packed 

grains relative to loose powders, and thus spectral 

shapes should resemble that of coarse particles in those 

regions. However, where the absorption coefficient is 

small, transmission through small grains (<5µm) is 

likely to occur [e.g. 3, 4]. Thus we would expect some 

differences between pressed powders and coarse grains 

in some spectral regions. Our previous work [5] has 

shown that many pressed pellet samples of <10 µm 

mineral mixtures have contributions from volume scat-

tering over portions of the mixed spectrum, leading to 

non-linear spectral combinations and reduced accuracy 

of mineral abundance retrievals using the linear least 

squares minimization (NNLS) [1,6] technique that has 

been traditionally applied to remote TIR data sets. 

Here we assess the applicability of partial least squares 

(PLS) analysis [7] to these mixture spectra, to deter-

mine whether model accuracy can be improved. PLS is 

a statistical method that generalizes and combines fea-

tures from principal component analysis (PCA) and 

multiple regression. It has been widely used in chemo-

metrics; for example, it is one of the primary data re-

duction techniques employed by the  Mars Science 

Laboratory Rover Curiosity ChemCam team [8,9]. 

Data and Methods:  Major primary and secondary 

minerals found on the Martian surface including feld-

spar, pyroxene, smectite, sulfate and carbonate, were 

crushed with an agate mortar and pestle and centri-

fuged to obtain < 10 µm size. Pure phases and mixtures 

of two, three and four components were made in vary-

ing proportions by volume. All of the samples were 

pressed into pellets at 15000PSI.  

Thermal emission spectra of pellets were measured 

at Stony Brook University from ~225 to 2000 cm
-1

. In 

order to avoid dehydration of sulfate during measure-

ment, sulfate-bearing mixtures were cooled to >30° 

below the detector temperature and then measured 

[10]. 

Non-negative linear least squares minimization 

(NNLS) using spectra of pellets and powders of pure 

minerals was used to derive mineral abundance of mix-

tures over the 400-1400cm
-1

 spectral range. PLS analy-

sis [7] was then employed to generate a calibration 

model from which unknown mineral abundance of mix-

ture spectra (testing data set) can be predicted using 

known spectra and mineral abundance (training data 

set). Here, we used feldspar and sulfate mixtures as the 

testing data set and all the pure phases and mixtures 

except feldspar and sulfate mixtures as the training data 

set (a total of 74 mixtures). Both NNLS and PLS in-

volve generating regression models  to solve the linear 

problem: Y=BX, where Y is one or several dependent 

variables, X is the independent variable or predictor 

variable and B is the matrix of regression coefficients. 

For NNLS, Y is the mixture spectrum and X is the 

spectral library (usually consisting of pure mineral 

sample spectra [1,6]). For PLS, Y is known mineral 

abundance and X is the spectra of pure and mixture 

samples with known abundances.    

 PLS analysis determines the statistical linear corre-

lation between the known mineral abundance and ob-

served spectra. Unlike NNLS, PLS can deal with data 

with strongly correlated, noisy and numerous X-

variables. Also, similar to PCA, PLS weights X varia-

bles, which reflects the covariance between X and Y. 

PLS may be suited to TIR spectra because for any giv-

en mineral, the emissivity in many channels will vary 

together. And, it can weight the major and minor min-

eral absorption features unequally, which is fit to de-

rive abundance of mixtures here.   

Results:  Here, two component mixtures of varying 

proportions of feldspar and sulfate are shown as an 

example. Modeled spectra from NNLS show close 

similarity to measured spectra (Figure 1). However, 

the predicted abundances are further from the known 

abundance compared to the PLS result (Table 1). Fig-

ure 2 shows the PLS-modeled abundance and known 

abundance of feldspar for the training data set. Except 

for a few points, most of the points fall close to the y=x 

line, indicating the model is working well to predict 

feldspar abundance in the training data set. The result-

ing regression analysis generates correlation coeffi-

cients between feldspar abundance and emissivity for 

each spectral channel (Figure 3). It identifies the corre-

lation with feldspar thermal infrared spectral featurse at 
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~450, 500,600, and 1000 cm
-1

 with two shifted absorp-

tion features near ~1100 cm
-1

. Applying the training 

data to the test data set (a two-component feldspar and 

sulfate mixture), the predicted abundances fall with-

in+/-15% of known abundance and show an improve-

ment over NNLS-modeled values.     

Discussion and Future Work: Our preliminary re-

sults suggest that PLS is a promising technique for re-

trieving mineral abundance from TIR spectra of fine-

grained mineral mixtures. Though the spectral compo-

nents combine non-linearly across the full spectral 

range, portions of the spectral range (generally, where 

absorption coefficients are high) do vary in a predicta-

ble manner (Figure 1), which likely contributes to the 

success of PLS. Future work will evaluate the perfor-

mance of the PLS model for all minerals in our con-

trolled mixtures, and for a variety of expanded training 

data sets being built from previous and ongoing, com-

plementary studies.   
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     Figure 1 Example two-component series using 

feldspar and sulfate and the NNLS model.  Spectra 

from pressed pellets are included for the end-members. 

The remaining spectra are measured and modeled spec-

tra of the controlled mixtures. The modeling range used 

was 400 to 1400 cm
-1

.  

Table 1 Known  abundance v.s. predicted abun-

dance of feldspar and sulfate mixtures of NNLS and 

partial least squares models  
known feldspar 

abundance 

NNLS predicted 

abundance 

PLS predicted 

abundance 

0.1 0.244 0.1702 

0.2 0.3409 0.2752 

0.5 0.7245 0.6548 

0.8 0.9335 0.9252 

0.9 0.9724 0.9571 

 

 
Figure 2 Known abundance and partial least square 

analysis modeled abundance of feldspar from training 

data set. The line is y=x.  

 

 
Figure 3 Regression coefficients (blue) of feldspar 

generate from partial least squares analysis and thermal 

infrared spectrum of feldspar (green, the y-axis of spec-

trum is emissivity).The model identifies feldspar ab-

sorpstion features in ~450,500,600,1000 cm
-1

 wave-

numbers.  
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