TRAPPED NOBLE GASES IN THIRTEEN UREILITES FROM ANTARCTICA. K. Nagao¹, M. K. Haba¹, J. Park^{2,3}, and G. F. Herzog², ¹Geochemical Research Center, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan (nagao@eqchem.s.u-tokyo.ac.jp), ²Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA (jp975@rci.rutgers.edu), ³Lunar & Planetary Institute, Houston, TX 77058, USA.

Introduction: Ureilites are know to have high concentrations of trapped noble gases, and their host phases are thought to be carbonaceous materials such as amorphous carbon, graphite and diamond [e.g., 1-4]. The origin and trapping mechanism of the trapped noble gases in ureilites, however, are still under discussion. As a part of noble gas study on 13 ureilites from Antarctica [5], we present isotopic compositions of trapped noble gases.

Samples and experimental procedure: Noble gases were measured for bulk samples from 13 different ureilites as shown in Table 1. For two ureilites, GRA95205 and GRA98032, two chips from each meteorite were measured. A noble gas mass spectrometer, modified-VG5400/MS-3, at the University of Tokyo was used for noble gas analysis. Fifteen bulk samples weighing ca. 30-50 mg were installed in a sample holder connected to a noble gas extraction furnace, and then preheated at 150°C overnight in ultra high vacuum condition to remove atmospheric noble gas contamination. Noble gases were extracted by heating each sample in the furnace at 1800°C for 30 min, and then purified with two Ti-Zr getters kept at the temperature of 800°C and SAES-getters (NP-10). The purified noble gases were separeated from eath other before introducing each noble gas (He, Ne, Ar, Kr, and Xe) into the mass spectrometer.

Results and discussion:

Light noble gases. Based on the light noble gas compositions obtained in this work, three different pairs have been identified [5]; 1) ALH82106, ALH82130, and ALH84136, 2) EET87517 and EET87720, and 3) GRA95205 and GRA98032. Cosmic-ray exposure ages for the ureilites are presented in [5]. Although cosmogenic Ne is dominant in the samples, only one ureilite, GRO95575, shows relatively high ²⁰Ne/²²Ne ratio of 4.3 and indicates a presence of trapped Ne with ²⁰Ne/²²Ne ratio in a rage from 10 to 11. The ratio agrees with the value of trapped Ne for ureilites, e.g., ²⁰Ne/²²Ne = 10.5 and ²¹Ne/²²Ne = 0.032 [1] and ²⁰Ne/²²Ne = 10.7 (for $0.03 \le {^{21}Ne}/{^{22}Ne} \le 0.05)$ [2]. Ar isotopic ratios. Low ⁴⁰Ar/³⁶Ar_{trap} ratios, 0.05–

Ar isotopic ratios. Low ${}^{40}\text{Ar}/{}^{50}\text{Ar}_{\text{trap}}$ ratios, 0.05– 5.0, are observed for the ureilites. Because of the high concentrations of trapped ${}^{36}\text{Ar}$ in the range from 6 × 10⁻⁸ ccSTP/g (MET21083) to 1.34 × 10⁻⁵ ccSTP/g (GRO95575), subtraction of cosmogenic Ar from the measured ³⁶Ar concentrations result in minor corrections in the ⁴⁰Ar/³⁶Ar_{trap} ratios. A plot of ⁴⁰Ar/³⁶Ar_{trap} against $1/^{36}$ Ar_{trap} (Fig. 1) shows that ⁴⁰Ar/³⁶Ar ratio originally trapped in ureiltes was very low, in agreement with the reported low ⁴⁰Ar/³⁶Ar ratios for ureilites; ⁴⁰Ar/³⁶Ar = (2.9 ± 1.7) × 10⁻⁴ was reported for Dyalpur [2]. The apparent increase in ⁴⁰Ar/³⁶Ar with lower concentration of trapped ³⁶Ar could be an incressing contamination of atmospheric Ar to the samples.

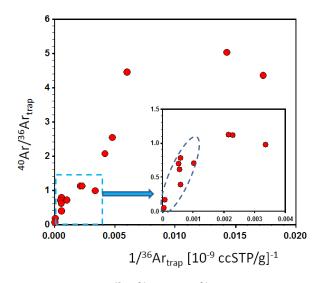


Fig. 1. Plot of ${}^{40}\text{Ar}/{}^{36}\text{Ar}_{trap}$ vs. $1/{}^{36}\text{Ar}_{trap}$. The area for low ${}^{40}\text{Ar}/{}^{36}\text{Ar}_{trap}$ is expanded in the figure.

Abundance ratios of Ar, Kr and Xe. Ratios of $^{36}Ar_{trap}$ / ^{132}Xe are plotted against ^{84}Kr / ^{132}Xe in Fig. 2, where the abundance ratios for Q-gas, a main trapped component in chondrites especially in carboneceous chondrites, are shown. Positive correlation among the abundance ratios is in good agreement with the reported correlation [e.g., 2, 3], although the spread for our data is narrower and extends to lower plotted area compared with those in [2, 3]. The positive correlation is explained as a selective loss of lighter noble gases Ar and Kr than Xe, resulted in low Ar/Xe and Kr/Xe ratios [2, 3]. The very low ^{84}Kr / ^{132}Xe ratios, < 0.2, observed for the paired ureilites, ALH82106, ALH82130 and ALH84136, might have been caused by intensive degassing.

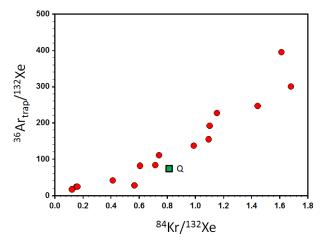


Fig. 2. Trapped 36 Ar/ 132 Xe vs. 84 Kr/ 132 Xe.

Isotopic compositions of Xe. Isotopic compositions of Xe and ¹³²Xe concentrations for the ureilites are presented in Table 1. Although the isotopic ratios are similar to those of Q-Xe, small differences in some isotope ratios are observed. Fig. 3 shows a plot of 130 Xe/¹³²Xe vs. 136 Xe/¹³²Xe, where addition of HL-Xe and fissiogenic Xe from ²⁴⁴Pu to Q-Xe is indicated. Data points seem to plot between Q-Xe and solar wind (SW)-Xe. Contribution from HL-Xe or fission-Xe to the trapped Xe is not observed, because of the abundant trapped Q-like Xe in the samples. The data points seem to plot along a mass fractionaton trend from SW-Xe, which may be consistent with the loss of lighter noble gases as indicated in Fig. 2.

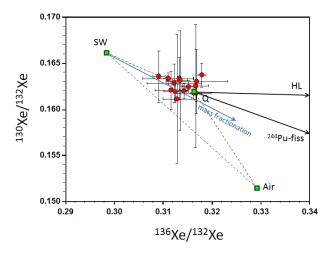


Fig. 3. ¹³⁰Xe/¹³²Xe ratos are plotted against ¹³⁶Xe/¹³²Xe ratios. Mixing lines between Q-Xe and HL-Xe, and Q-Xe and Xe produced by fission of ²⁴⁴Pu are shown.

References: [1] Wacker J. F. (1986) *GCA*, 50, 633–642. [2] Göbel R. et al. (1978) *JGR*, 83, 855–867. [3] Okazaki R. et al. (2003) MAPS 38, 767–781. [4] Cosarinsky M. et al. (2010) *41st LPSC*, Abstract #1770. [5] Park J. et al. (2014) *45th LPSC*, Abstract (submitted).

Table 1. Concent	rations of 1	32Xe and Xe	e isotopi	ic ratios in u	reilite	s from Anta	rctica.											
Sample	¹³² Xe [1	³² Xe [10 ⁻¹² cc/g]		124Xe/132Xe		126Xe/132Xe		128Xe/132Xe		Ke/ ¹³² Xe	130Xe/132Xe		131Xe/132Xe		134Xe/132Xe		136Xe/132Xe	
ALH82106-23		14480		0.00445		0.00401		0.0815		1.0428		0.1617	ĺ	0.8199		0.3791		0.3168
	±	1448	±	0.00003	±	0.00005	±	0.0003	±	0.0038	±	0.0010	±	0.0033	±	0.0008	±	0.0012
ALH82130-35		18807		0.00440		0.00403		0.0817		1.0407		0.1637		0.8201		0.3806		0.3180
	±	1881	±	0.00004	±	0.00004	±	0.0003	±	0.0034	±	0.0013	±	0.0013	±	0.0010	±	0.0008
ALH84136-36		18472		0.00443		0.00400		0.0812		1.0363		0.1625		0.8203		0.3805		0.3167
	±	1847	±	0.00010	±	0.00008	±	0.0012	±	0.0081	±	0.0067	±	0.0067	±	0.0024	±	0.0026
EET83225-30		840		0.00426		0.00395		0.0824		1.0438		0.1620		0.8209		0.3755		0.3117
	±	84	±	0.00032	±	0.00028	±	0.0017	±	0.0049	±	0.0021	±	0.0048	±	0.0033	±	0.0033
EET83309-38		78689		0.00436		0.00409		0.0816		1.0383		0.1620		0.8196		0.3778		0.3144
	±	7869	±	0.00008	±	0.00008	±	0.0006	±	0.0059	±	0.0009	±	0.0016	±	0.0013	±	0.0009
EET87511-32		10634		0.00444		0.00411		0.0817		1.0397		0.1633		0.8195		0.3776		0.3134
	±	1064	±	0.00005	±	0.00006	±	0.0017	±	0.0191	±	0.0023	±	0.0057	±	0.0019	±	0.0028
EET87517-32		2681		0.00447		0.00405		0.0818		1.0511		0.1631		0.8216		0.3781		0.3135
	±	268	±	0.00010	±	0.00009	±	0.0060	±	0.0005	±	0.0054	±	0.0054	±	0.0026	±	0.0015
EET87720-26		2540		0.00419		0.00398		0.0808		1.0399		0.1635		0.8229		0.3755		0.3092
	±	254	±	0.00008	±	0.00013	±	0.0007	±	0.0065	±	0.0028	±	0.0117	±	0.0016	±	0.0013
GRA95205-32		3900		0.00447		0.00401		0.0806		1.0320		0.1611		0.8202		0.3781		0.3129
	±	390	±	0.00010	±	0.00007	±	0.0007	±	0.0160	±	0.0070	±	0.0070	±	0.0027	±	0.0029
GRA95205-33		7214		0.00433		0.00405		0.0807		1.0370		0.1633		0.8201		0.3736		0.3111
	±	722	±	0.00011	±	0.00012	±	0.0014	±	0.0200	±	0.0007	±	0.0078	±	0.0063	±	0.0052
GRA98032-17		9579		0.00439		0.00410		0.0827		1.0360		0.1630		0.8197		0.3802		0.3169
	±	958	±	0.00014	±	0.00013	±	0.0015	±	0.0049	±	0.0035	±	0.0011	±	0.0044	±	0.0063
GRA98032-19		5701		0.00433		0.00399		0.0810		1.0304		0.1619		0.8228		0.3768		0.3125
	±	570	±	0.00012	±	0.00008	±	0.0005	±	0.0038	±	0.0012	±	0.0036	±	0.0015	±	0.0023
GRO95575-17		34952		0.00438		0.00408		0.0818		1.0424		0.1628		0.8236		0.3778		0.3123
	±	3495	±	0.00015	±	0.00011	±	0.0015	±	0.0223	±	0.0021	±	0.0087	±	0.0053	±	0.0056
MET1083-5		1416		0.00431		0.00407		0.0816		1.0393		0.1617		0.8206		0.3810		0.3163
	±	142	±	0.00020	±	0.00028	±	0.0008	±	0.0050	±	0.0008	±	0.0029	±	0.0042	±	0.0036
MET1085-5		6058		0.00442		0.00411		0.0815		1.0430		0.1624		0.8220		0.3794		0.3153
	±	606	±	0.00010	±	0.00006	±	0.0012	±	0.0079	±	0.0007	±	0.0029	±	0.0013	+	0.0014