SURFACE MAPPING OF CARBONACEOUS CHONDRITE MURCHISON IN SEARCH OF ORGANIC CARBON INCLUSIONS. Z. Peeters^{1,2}, B. Liebig¹, M.C. Liu¹; ¹ Academia Sinica Institute of Astronomy and Astrophysics, Roosevelt Road, sec. 4, no. 1, Taipei 10617, Taiwan R.O.C; ² zan@asiaa.sinica.edu.tw.

Introduction: Organic matter (OM) in the fine-grained matrix of primitive meteorites has traditionally been studied in extracted form, where the insoluble organic matter (IOM) was obtained by dissolving away the surrounding material [1]. Previous in situ studies have shown that meteoritic OM can occur in inclusions of up to 10 μ m [2, 3, 4]. Those studies focussed on the very primitive CR chondrites Queen Alexandra Range (QUE) 99177 [5, 6] and Graves Nunataks (GRA) 95229. In this study, we present the results of a search for similar µm-sized OM inclusions in Murchison, a CM2 carbonaceous chondrite. The data presented here are the first results obtained with the newly inaugurated Cameca nanoSIMS 50L at Academia Sinica in Taiwan.

Experimental: A 1 cm sample of the Murchison meteorite was pressed into indium, polished, and carbon coated. ${}^{12}C^{12}C^{-}$, ${}^{13}C^{12}C^{-}$, ${}^{14}N^{12}C^{-}$, ${}^{15}N^{12}C^{-}$, ${}^{28}Si^{-}$, ${}^{29}Si^{-}$, and ${}^{30}Si^{-}$ secondary ions, produced by incidence of a ~1 pA Cs⁺ beam, were measured in parallel. 22 Images (23 × 23 µm, 256 × 256 pixels, 4 ms

per pixel dwell time, 15 iterations per image) were recorded in automated chain mode.

Results and discussion: Figure 1 shows two maps of Murchison meteorite as obtained by nanoSIMS. The top panel displays the map in ${}^{12}C_2$ counts on a log scale. The various shades of blue and red show that carbon is present throughout the matrix as a fine-grained material at varying levels of abundance, except where crystalline grains have replaced the matrix (black areas; the composition of these grains is not known from this measurement). The yellow to white coloured areas show regions with a higher carbon abundance.

In the bottom panel of figure 1, the ${}^{15}N/{}^{14}N$ ratio is shown (measured as ${}^{12}C^{15}N/{}^{12}C^{14}N$). Several of the areas that display a high carbon abundance in the top panel, also appear in the bottom panel, but not all. For example, in the second image from the right, bottom row, there is a feature (two round spheres) with a high carbon abundance. No nitrogen was detected in the same location, which may indicate a grain of carbonate, graphite, or metal carbide, although not SiC, since no silicon was detected.

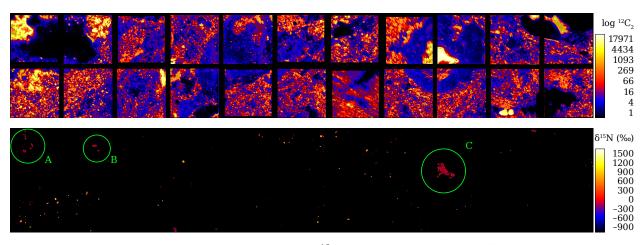


Figure 1: Murchison meteorite nanoSIMS map in $^{12}C_2$ (top, log scale) and $\delta^{15}N$ (bottom, ‰). Each image is 23 \times 23 µm, and separated by 2 µm. Supra-µm-sized, organic, carbon-rich inclusions, candidates for further investigation, are circled in green.

The three areas in figure 1, bottom panel, circled in green, display a high carbon and nitrogen abundance, indicating that those inclusions are likely organic matter. They range in size from 10 µm (C) to 4 µm (B). The δ^{15} N of these inclusions ranges from $-15 \pm 9.5 \%$ (C), to $+31 \pm 19 \%$ (A). The errors on the ¹⁵N abundances are large because of low ¹⁵N counts; for better statistics a longer integration time is needed, which would have prevented us from covering a large area. The δ^{15} N values obtained here for the inclusions are nonetheless indicative of OM, and are close to the δ^{15} N value previously reported for Murchison's bulk IOM: $-1.0 \pm 0.4 \%$ [1].

Outside the large carbon-rich inclusions, 90 smaller (≥ 5 pixels) ¹⁵N hot spots have been found, ranging in δ^{15} N value from -380 % to +1100 %. Again, the values are associated with high errors, but are indicative of the presence of small grains with a wide range in ¹⁵N enrichments or depletions.

Conclusion: We have reported the discovery of large (several µm), organic, carbon-

rich inclusions in the CM2 meteorite Murchison. These inclusions are similar to those previously found in CR chondrites QUE 99177 and GRA 95229 [3, 4]. The ¹⁵N isotopic composition of these inclusions is variable, but close the bulk δ^{15} N value previously measured for Murchison's IOM [1]. Future research will target these inclusions for FIB-liftout and further analysis. This work also represents the first results of a newly established laboratory for cosmochemistry and the recently inaugurated nanoSIMS at the Academia Sinica Institute for Astronomy and Astrophysics.

 References:
 [1] Alexander C. M. O'D.

 et al. (2007) Geochim. Cosmochim. Act. 71,

 17, 4380–4403.
 [2] Nguyen A. N. et al. (2008)

 Meteorit. Planet. Sci. 43, A5277.
 [3] Peeters

 Z. et al. (2011) Meteorit. Planet. Sci. 46,

 A185.
 [4] Peeters Z. et al. (2012) in LPS

 XLIII A2612.
 [5] Floss C. et al. (2009)

 Astrophys. J. 697, 2, 1242–1255.
 [6] Abreu

 N. M. et al. (2010) Geochim. Cosmochim. Act.

 74, 3, 1146–1171.