
WHAT IS THE SURFACE TEMPERATURE OF THE MOON?  J. L. Bandfield1 P. O. Hayne2 and D. A. Paige3,
1Space Science Institute (jbandfield@spacescience.org); 2Jet Propulsion Laboratory, California Institute of Technol-
ogy; 3University of California, Los Angeles

Introduction: Surface temperature is fundamental
property and we need accurate knowledge of it in or-
der  to  understand  planetary  surfaces.  In  their  own
right, temperatures can be used to determine near sur-
face thermophysical properties that can lead to an un-
derstanding of the processes that form the surface layer
and regolith. Infrared measurements also contain spec-
tral features dependent on surface mineralogy that are
convolved with temperature dependent  radiance.  The
accurate separation of the temperature and mineralogi-
cal signals in the spectra is essential for the determina-
tion of both surface temperatures and mineralogy.

This is an important problem for the interpretation
of both thermal infrared and near-infrared observations
of the lunar surface [e.g., 1-7]. With knowledge of sur-
face temperature, it is possible to separate these two ef-
fects, allowing for further analysis of surface mineral-
ogy  and  thermophysical  properties.  Methods  have
been developed to retrieve surface temperatures  and,
as is often necessary with shorter wavelength data, re-
cover surface reflectance free of residual temperature
effects [1,2,4,6].

The lunar  surface  has  two properties  that  greatly
complicate  the notion of  surface  temperature;  1)  the
surface is extremely rough [3,8], and 2) the regolith is
highly insulating [e.g., 9]. These two properties ensure
that  thermally  isolated  surfaces  can  be  separated  by
just  a  few millimeters  and  can  have  vastly  different
temperatures  depending  on  the  local  solar  incidence
angles [10-12] (Fig. 1). Consequently, remote observa-
tions of the lunar surface typically have a wide variety
of temperatures within the measurement field of view.
This leads to  properties  such  as  infrared  “beaming”,
for example [13].

The  emitted  spectral  radiance  from  a  surface  of
mixed  temperatures  cannot  be  approximated  by  a
model that only uses a single temperature. Under most
circumstances,  this  assumption  will  result  in  a  blue
slope in the resulting emissivity or thermally corrected
reflectance spectra [3,7]. The effects of anisothermality
are most severe at short wavelengths and the resulting
effects on the spectrum are greatest at high angles of
solar  incidence  with relatively low average  tempera-
tures. In fact, the highest temperature surfaces with the
lowest angles of solar incidence are the least suscepti-
ble to this effect (Figs. 2-3).

Model: In  order  to  properly  account  for  surface
anisothermality, it is necessary to account for surface
roughness effects.  For this work, we use a simple ra-

diative equilibrium model for daytime measurements.
This closely approximates the lunar surface tempera-
tures because of the slow rotation and low thermal in-
ertia of the lunar surface. Where the sun is below the
local horizon, surface temperature is set to 100K (simi-
lar  to  nighttime  surface  temperatures).  To  model
roughness,  we use  a simple Gaussian  distribution of
slopes similar to that of [8].  This reduces the surface

Figure 1.  The lunar regolith is both rough and highly
insulating.  Temperatures  of  sun-facing versus  shaded
surfaces  in  this  image  can  vary  by  nearly  200K.
(Apollo image AS15-82-11105)

Figure 2. Modeled brightness temperatures for a typi-
cal lunar surface roughness (25° RMS). Apparent tem-
perature variations and spectral slopes become severe
at  high  angles  of  solar  incidence  and  short  wave-
lengths.
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slopes/roughness  to  a  single  parameter  (RMS  slope
distribution),  while maintaining reasonable fidelity to
natural  surfaces.  Using the modeled temperatures  for
each  slope/azimuth  combination  and  slope  distribu-
tions, the mixture of Planck radiances are calculated in
proportion  to  their  contribution  to  the  measurement
field of view. The resulting modeled spectral radiance
can  be  directly  compared  with  spacecraft  measure-
ments (Fig. 3) [e.g., 7].

Results: Lunar Reconnaissance Orbiter Diviner ra-
diometer data show clear signs of severe anisothermal-
ity as expected. Multiple angle observations of a sur-

face have shown brightness temperature variations of
up to 65 K with the varying proportion of sub-pixel
shaded and sunlit surfaces in the measurement field of
view. In addition, shorter wavelength brightness tem-
peratures  deviate  from  longer  wavelengths  with  in-
creasing  solar  incidence  (Fig.  3).  Comparison  of  the
modeled  brightness  temperatures  with  LRO  Diviner
measurements shows good agreement with a 25° RMS
surface slope distribution, broadly similar to previous
work [8].

Implications: Interpretation of thermally corrected
lunar surface reflectance or emissivity spectra must ei-
ther incorporate roughness modeling or be restricted to
low angles of solar incidence. Accounting for rough-
ness is essential for the interpretation of lunar compo-
sitions, but has not been implemented for the thermal
correction of lunar near infrared measurements [2,4,6].

The  lack  of  accounting  for  surface  roughness  is
likely to be at least part of the cause of the variable in-
tensity of the 3  μm OH- absorption on the Moon.  Al-
though a distinct  absorption feature is present  and is
clearly attributed to H2O/OH- [14-16], the variability in
its strength shows a pattern and magnitude similar to
that expected from surface roughness effects (Fig. 4).
For  example,  the blue  slope  will  be  most  intense  at
high latitudes and during early morning/late afternoon.

Similar effects are likely to be present in NIR mea-
surements of any airless body, and a better understand-
ing of the effects of roughness and anisothermality on
emitted radiance can lead to greatly improved correc-
tions  and  derivation  of  surface  temperature  distribu-
tions in these datasets.
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Figure 3. Diviner  measurements  (black  crosses)  for
300-315°E, -1 to 1°N compared to thermal roughness
models  (red  lines).  In  agreement  with  the modeling,
measured brightness temperature differences are most
severe outside of local times of ~1000-1400. 
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Figure 4. Modeled  I/F spectra  for  a surface  with a 25°
RMS slope distribution and a constant reflectance of 0.25.
Modeled spectra were corrected for  emitted radiance as-
suming an isothermal surface and the brightness tempera-
ture derived at 2  μm wavelengths. The assumption of an
isothermal surface results in significant slopes present in
the resulting corrected spectra that is highly dependent on
solar incidence.

Solar Incidence = 0°

45°

60°

75°

Wavelength (μm)

I/
F

1519.pdf45th Lunar and Planetary Science Conference (2014)


