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Introduction: The search for water and the un-
solved location of water reservoirs and sinks on Mars
has stimulated numerous studies on the water geomor-
phology and sedimentology of Mars, and the hydro-
logic cycle especially in the Noachian and Hesperian
[1]. Fluid water was once abundant to the point that the
Northern Lowlands might have held an ocean [2]; per-
haps also large areas like Valles Marineris were filled
with water to form giant lakes [3].

The ellipsoidal impact basin of Hellas Planitia (HP)
stretches between latitudes 30° S and 55° S, with axes
lengths D = 1,800-2,200-km (Fig. 1). It has been sug-
gested that a lake filled ancient HP; water depths were
uncertain, most likely between 6900 m [4] and 600 m
[5], corresponding to a maximum water volume of
2x10" Km?®. Sedimentary morphologies suggesting a
submerged deposition include channel erosion, fan
deposits and overbank deposition especially from the
east, and peculiar morphologies such as honeycomb
textures [5]. However, many features are ambiguously
interpretable as subaqueous and others, like volcanic
overflow from Malea and Hesperia Plani and perigla-
cial textures, are obviously subaerial. The assessment
of HP lake is important not only for the general issue of
water on Mars, but also because a lake of this size
would have affected the planet’s hydrologic regime.
Here it is argued that in addition to the sedimentologic
indications for a HP lake, other dynamic constraints
could be worth studying to assess its possible presence

on ancient Mars.
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Figure 1. The HP basin (colored MOLA) and NW-SE
topographic section along the black line. Cylindrical pro-
jection. In the section, the central unit is shown in black.

Issue 1: the central depositional unit: A puzzling fea-
ture of HP is the central depositional unit of Alpheus
Colles (Fig. 1). This formation appears as a relatively
abrupt step standing 400 km from the rim with maxi-
mum height < 600-800 m. The deposit volume can be
estimated at 4x10° km®. Stacked sequences of centripe-

tal subaqueous landslide deposits from the crater
flanks, if attractive as a possible explanation of the
central deposit [6], might be problematic considering
that the slope of the flanks is only 1.5°-5° (estimated
on a 100-km baseline). The wedge model indicates that
the slope is gravitationally stable if H<H; where

HC:(40/pg)[sinﬂocos(p/(lfcos(/a’o7¢7))] is the critical
height, C is the cohesion, ¢ is the friction angle,
B=(p,+¢)/2 is the present long-scale slope angle
(1.79, p, is the pre-failure sloping angle and H is the

height of HP borders. In failure has taken place, the
slope and friction angles g ~2.21°, p~1.19° can be

estimated based on the volume of the failed mass, from
which  H_(m)~97 c(kpa)which for C=1 MPa [7]

would indicate H<<Hc, i.e., stability of the HP
wallslope. In addition, the resulting ratio between fall
height and run-out H/R~0.01-0.02 would be more
consistent with mudflows rather than subaqueous sec-
tor collapses of rock, for which H/R is usually 5-10
times greater [8]. Perhaps a series of subaqueous mud-
flows could better explain this unit; in this view, the
northern step highlighted in Fig. 1, regarded as a fan
deposit [4], could be interpreted as the front of a suba-
queous debris flow from the east. As an alternate view,
the central deposit might be derive from turbidity cur-
rents (TCs) from the rims of the crater. Some leveed
channels like Dao Vallis [9] descend from the eastern
crater rims with levees widths W=12-15 km and thick-
ness D=300 m and may be Mars analogs of submarine
channels on Earth transporting TCs. Some hundreds of
TCs descending from the rim would have been suffi-
cient to fill up the HP basin forming the central depos-
it. Because a TC damps the coarser sediment at the
slope break, the annular lack of sedimentation especial-
ly to the west remains, however unexplained.

Issue 2: inferences on the hydrodynamics of the
Hellas Planitia lake: In analogy with large lakes on
Earth, water in HP lake must have been affected by the
rotation of Mars with an acceleration of the order f v
where the Coriolis parameter is f =2Qsing, ¢ is the

latitude, and ©=7.09 x 10° s™*. The HP basin stretches
between latitudes 30° S and 55° S , corresponding to a
Coriolis parameter 7.09 x 10°s? <f<1.16 x 10*s*
with an average f=0.934 10“*s™.  Water depths sug-
gested for Hellas range from -6900 m barely wetting
the lowermost depths of the crater [4] to a height well
above the conventional “0” level [5]. The importance
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of Coriolis effects in the water lake dynamics is quanti-
fied by the dimensionless ratio n = D f/ C; between
the lake diameter D and the internal Rossby radius C, /

f where C, :./gT is the phase velocity and T is the

water depth. Values higher than unity indicate a signif-
icant role of circular currents in HP induced by Martian
rotation. Consider as an example that for the Russian
Lake Baikal, large on terrestrial standards (80 km x
640 km) but by no means comparable to Hellas Plani-
tia, n is about 0.33. In this lake, the rotary spectra of
deep currents exhibit a high component at a clockwise
frequency compatible to currents induced by the
Earth’s rotation [10]. Similar currents have been doc-
umented in other lakes [11]. As a consequence of the
large size of the Hellas Planitia basin, the Coriolis ac-
celeration might have appreciably influenced the hy-
drological dynamics of the lake. The geometry of the
basin suggests values of n of the order of 2.04 and 1.48
for water levels at -6000 m (water depth 1000 m) and -
1000 (water depth 6000 m) respectively. Clockwise
currents in the form of Kelvin waves (e.g., [12]) in-
volving vertical movement of water travelling parallel
to the rim at a speed C, (with 61 m/s < C, <149 m/s),
would have been consequence of water perturbations in
the basin, also in an ice-covered lake [13]. Wave height
and speed decayed from the lake rim toward the center
of the basin with a length scale
R~C, / f ~500—1,000 km and were thus greater toward

the border than at the center. Perhaps the peripheral
currents in the lake hampered the settling of clay-sized
material, so creating the morphological gap between
the eroded annulus and the central depositional unit in
the lake.

Issue 3: the scarcity of impact craters in Hellas
Planitia: The small number of craters observed in the
HP basin compared to the surrounding Noachian ter-
rain is likely consequence of i) initial erasure of pre-
Hellas craters by the impact, followed by ii) oblitera-
tion due to sedimentation in Hellas, and/or iii) shield-
ing of impacts by the presence of water and/or ice. The
effect iii) is preliminarily investigated considering the
drag against a meteoroid traveling in water, and ne-
glecting meteoroid break-up [14]. Upon travelling
through a water/ice layer of thickness p , the impact

velocity at the bottom of HP is found integrating a
simple differential equation which yields [14]

_3A Cobu
2 p Lsing (1)
where C, ~0.877 is the drag coefficient for the mete-

VSEAFLOOR ~ VSURrFACE eXp|:

oroid in water/ice travelling with angle ¢ with respect
to the horizontal, L the meteoroid diameter. For the
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density of a stony body p=2,500 kgm™, and using
the relationship between crater diameter D and L [14],
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the crater distribution modified by the presence of
shielding water can be estimated for a 3.5 Ga old sur-
face (Fig. 2). Note the strong decrease of frequency for
craters of diameter less than 10 km (this result, howev-
er, neglects the post-water small craters population).
A better characterization of the issues presented here is
under study.
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Figure 2. A first approximation to account for the shield-
ing effect of water on the frequency distribution of craters
on Mars’ surface. Each curve shows the total number of
craters equal or greater than the given diameter. Without
water, a “3.5 Ga” Hartmann integral distribution would
result for a surface this old (likely age of HP); 7 and 4 km
of water modify the distribution to produce the curves
shown (head-on impacts). “Saturation” is the ideal power-
law distribution for a surface of age > 4.5 Ga. Meteoroid
breakup is neglected in this first approximation.
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