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Introduction:  Transverse aeolian ridges (TARs) 

are small-scale relict bedforms on the surface of Mars 
first detected in narrow-angle images from the Mars 
Orbiter Camera (MOC) [1], [2]. Dubbed “ridges” to 
preserve origins as both dunes or ripples, TARs are 
widespread inactive features on Mars. Their formation, 
age, composition, and role in the past Martian sediment 
cycle are poorly understood [2]–[4].  

TARs are uniquely well-resolved in High 
Resolution Imaging Science Experiment (HiRISE) 
camera images. HiRISE  currently provides the highest 
resolution data of the surface of Mars, with ~0.25 
m/pixel resolution in a single panchromatic band [5], 
which far exceeds other modern imaging systems in 
orbit around Mars. This high resolution allows for the 
extraction of geologic and geomorphic information that 
is simply unavailable from other sensors. 

TARs exhibit a range of morphologies (Fig. 1), 
which are interpreted as likely representing disparate 
formative or evolutionary processes. Past work has 
categorized TAR morphologies but relied on manual 
surveys and classifications [1], [2]. Automating the 
detection and classification of TARs in HiRISE imagery 
is an important step towards betting understanding 
TARs’ evolution and role in the Martian aeolian 
systems.  
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Fig. 1: TAR morphology 
examples:  
A) simple 
B) forked  
C) sinuous  
D) barchan-like  
E) networked  

 This study assesses the feasibility of two 
approaches to extracting TARs from HiRISE images: 1) 
a pixel-based approach where each pixel is classified 
based on how TAR-like it is, or 2) an object-based 
approach in which TAR pixels are segmented, and then 
classified in ensemble.  

Normally, both of these approaches rely on multi-
spectral imagery to discriminate between different 
classes in a higher dimensional feature-space, but 
HiRISE imagery is only single-band. Here, six textural 
transforms are applied to the imagery (Fig. 2) to produce 
a pseudo-multiband image, which can then be used with 
typical classification algorithms.  

 
Fig. 2: The six bands that composed each pseudo-multiband image. 

3017.pdfSixth Intl Planetary Dunes Workshop 2020 (LPI Contrib. No. 2188)



Methods: Six 200x200 pixel (100x100 meter) 
samples of common TAR morphologies (simple, 
forked, sinuous, and networked) were cropped from 
three different pseudo-multiband HiRISE images. In 
total, 24 samples were collected from 12 different 
HiRISE images. Training samples were manually 
collected from each sample tile and are used to classify 
pixels into one of five classes: no TARs (0), simple 
TARs (1), forked TARs (2), sinuous TARs (3), or 
networked TARs (4). Each tile was then classified by a 
random forest (RF) classifier with 50 trees, a depth of 
30, and a maximum of 1,000 samples per class to 
produce a label band for each tile. The multiband 
samples and the labelled band were converted into 3D 
numerical arrays, and then into a text file with a column 
for each band.  

The six textural bands of the text file were used to 
train a self-organizing map (SOM) (also known as a 
Kohonen map or network) [6], [7]. SOMs are a type of 
artificial neural network (ANN) that implement 
unsupervised learning to produce a 2D representation 
(the map) of the input space of the training samples (Fig. 
3). For this project, a 79x79 map was initialized and the 
neighborhood and learning rate parameters were 
optimized over 10,000 iterations to minimize the 
quantization error of the map. The initial SOM weights 
were then derived from the principle components of the 
dataset (as recommended in the literature [8]), and the 
SOM was trained for 100,000 iterations. Using a 
75/25% train/test split of the five RF labels, the 
precision, and recall of the network were tested. The 
same procedure was repeated with a simple binary 
classification of TARs/not-TARs. 

 
Fig. 3: The distance map of the SOM produced in this project. Light 
colors indicate large differences between adjacent neurons, dark 
colors indicate similarity. Non-TAR pixels were mapped to the upper 
left, while TAR pixels were spread across the rest of the map. 

Results: The SOM was only able to classify the 
TAR morphologies with ~56% precision and ~35% 
recall. The binary classification was more successful, 
with 77% precision and 69% recall.  

Discussion: The multiband pixel vectors are not 
useful for distinguishing between TAR morphologies, 
but could be used to differentiate them from the rest of 
the Martian landscape. However, the RF-based binary 
classification of TARs/not TARs was successful in 
identifying TARs, especially given the diversity of both 
the TARs and the not-TAR areas in the sample tiles. 

Going forward, a more robust and universal RF 
classifier will be developed. The binary output of this 
classifier could then be used in combination with a 
pattern-recognition algorithm to classify TARs based on 
their disparate shapes (Fig. 4). 

 
Fig. 4: The shape of each common TAR morphology as generated by 
binary RF classifiers. Each image is 100x100 meters. 
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