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Introduction:  In 1978, in a locked conference 

room, twelve planetary scientists worked tirelessly to 
examine the plethora of crater population data in the 
literature with the goal of deriving a "best practices" 
set of recommendations.  While the setting is perhaps 
dramatized, the result was the 1979 paper, "Standard 
Techniques for Presentation and Analysis of Crater 
Size-Frequency Data" [1].  It described a set of rec-
ommendations for how crater population data – specif-
ically cataloged craters' diameters – should be tabulat-
ed and it describes two methods for display:  Cumula-
tive Size-Frequency Distribution (CSFD) and Relative 
Size-Frequency Distribution (R-plot).  It also described 
the Differential Size-Frequency Distribution (DSFD or 
ISFD for "incremental" as it is sometimes referred to 
today).  These all display crater diameter on the abscis-
sa and some form of crater density or crater number on 
the ordinate axis.  In the nearly four decades since that 
effort, several issues have arisen related to these types 
of display – specifically how diameter bins are as-
signed and uncertainties calculated – and a reexamina-
tion of these and whether they are appropriate is the 
subject of this abstract. 

Binning Scheme:  All of the recommended display 
types share a binning scheme in common.  Crater di-
ameters are binned on the x-axis, usually such that they 
appear evenly spaced when that axis is in log10 or, as 
advocated often by W.K. Hartmann, the axis tick 
marks are in 2N where N is in the set ℤ (counting num-
bers and their additive inverses).  Bins are usually set 
in multiplicative intervals of 21/2·D, such that if the first 
bin begins at D = 1 km, the second is 2 km, third is 4 
km, and so on in a geometric progression.  Then, the 
craters with diameters within each bin are summed or 
scaled in a method specific with the graph type. 

The issue with this binning scheme is: where does 
the crater datum reside for that bin on the abscissa?  If 
the data were approximately normally distributed, then 
the bin location would simply be the mean of the bin 
boundaries.  In the above example, this would be 1.5 
km, 3 km, 6 km, etc.  However, crater population data 
typically follow a power law with an exponent of any-
where from –2 to –8, while model crater production 
functions (e.g., [2]) have exponents of –2 to about –3.5.  
This means that, not only are there many more small 
craters within any given bin, but that one cannot as-
sume an a priori distribution from which to easily cal-
culate where the bins should be. 

The variability in where bins are placed will have 
the effect of changing the amplitude of any of the 
SFDs.  For example, if bin locations are placed at too 
large diameters, then the spatial density of craters will 

be displayed and interpreted as larger than it truly is, 
which would result in, e.g., older model ages for a giv-
en surface.  The opposite is also true. 

With this described, we now describe the three 
main plotting techniques and how uncertainties are 
ascribed. 

CSFD:  A cumulative size-frequency distribution 
is created such that the number of craters within the 
largest diameter bin is assigned the value on the ordi-
nate axis.  The next-largest bin is the sum of its craters 
and the largest bin.  And so on.  This has the effect that 
the number of craters in any given bin is the total num-
ber of all craters larger than the minimum diameter for 
that bin. 

The CSFD can then be normalized to the surface 
area on which craters were identified.  This is often 
written as N(D) notation, where D is the minimum bin 
diameter.  For example, the lunar chronology [e.g., 2, 
3] is defined for N(1) only – the spatial density of cra-
ters on a given terrain larger than or equal to 1 km in 
diameter. 

Per the 1979 paper [1], uncertainties are ascribed as 
N1/2 where N is the number of craters in any given bin 
of the CSFD.  This is based on the assumption that 
identifying impact craters is inherently a Poisson-like 
counting endeavor. 

DSFD or ISFD:  The differential or incremental 
SFD is the same as the CSFD, minus one step: Each 
bin is simply the number of craters in that bin (and 
then potentially normalized to the surface area).  Un-
certainties are again N1/2, but they will necessarily be 
larger per bin than the corresponding CSFD (except for 
the largest diameter bin). 

R-plot:  The relative plot does not have the same 
option as the C or D/I SFDs, for it must be normalized 
to the surface area.  The ordinate axis value is: 

R = D3n A Db −Da( )  
where D  is the geometric mean of the diameters in the 
bin: 
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where n is the number of craters per bin, dj is the di-
ameter of the jth crater in the bin, Da and Db are the 
diameter limits of the bin (such that Db > Da), and A is 
the surface area of the terrain on which craters were 
identified. 

Uncertainty is calculated as R/N1/2, again assuming 
Poisson uncertainties. 

Assigning Uncertainties:  The root theory behind 
assigning these uncertainties is that crater populations 
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should follow Poisson statistics since researchers are 
counting discrete events.  In a Poisson distribution with 
a mean N, one-sigma uncertainties are N1/2.  These are 
where 68% of the data should fall.  Practically speak-
ing, this can be interpreted as, (a) if history were run 
again, 68% of the time, craters in that N±N1/2 range at 
any given diameter would be found; and/or (b) if an-
other researcher (or the same researcher at a different 
time) were to identify craters in the region, craters 
within that N±N1/2 range at any given diameter will be 
found 68% of the time. 

Recent questions have arisen about this, however, 
specifically with respect to assigning CSFD uncertain-
ties and uncertainties of very small numbers of craters 
– e.g., 1 crater. 

For the latter, consider the following thought ex-
periment:  You observe 1 crater in Arizona, the famous 
"Meteor Crater."  Does that mean there are 0–2 craters 
in Arizona (since 11/2 = 1)?  Whether strict Poisson 
statistics are appropriate in this case is questionable as 
related to a practical interpretation of the data. 

For the former, the issue can be thought of in this 
manner:  For each successively small diameter bin on a 
CSFD, the uncertainty grows because there are more 
craters.  However, the relative uncertainty – the uncer-
tainty divided by its value – will shrink because 

lim
N→∞

N 1/2 N = 0 . 

However, because there will be a limiting point where 
craters are too small to be detectable, there will be suc-
cessively fewer and fewer new craters that are a part of 
the smallest bins.  Since there is less new information 
that is incorporated into each diameter bin, should the 
assigned uncertainty reflect that? 

Potential Solutions:  At the May workshop, one 
potential better practice we will argue for is that a bin-
ning scheme is not necessary.  Instead, we propose 
what is known in probability and statistics as the "em-
pirical survivor function" (i.e., this is defined as one 
minus the empirical cumulative distribution function), 
or "survivor function" for short.  The survivor function 
is defined as the probability that a crater is larger than 
or equal to some value.  Note that this is essentially the 
CSFD from [1] where each diameter is its own "bin." 

Plotting the survivor function on a log-log plot (i.e., 
plot of the log probability against the log10(D)) can be 
used to identify a suitable power law model.  For ex-
ample, if the (transformed) survivor function appears 
as a straight line on the log-log plot, then we know a 
power law is a suitable model.  Similarly, plotting the 
survivor function on other scales may help identify 
other suitable models for the crater data.  For example, 
plotting the log of the diameters against the quantile 
function of a standard normal distribution would in-
form that a lognormal distribution could be a suitable 
model.  

Once a suitable model for the data has been identi-
fied, Bayesian or maximum likelihood estimation is 
presented for model fitting.  Using such methods al-

lows us to assign defendable uncertainties to the model 
fit and for any function that is dependent on the fit.  
Furthermore, any uncertainty that is calculated will 
borrow information from the entire fit of the data, po-
tentially providing more precision in the estimates.  
This is quite different than the current approach of 
assuming an independent Poisson count for a bin 
which only uses the information for that bin (or for all 
bins larger than it). 

We recognize that any significant suggested change 
from current standard practices can result in resistance 
from the community who would prefer a simple, easy-
to-understand implementation even if it may contain 
small errors.  These issues will also be addressed in our 
talk at the May workshop where we will present the 
current technique and its associated issues; what we 
think is an ideal technique from a statistical standpoint 
and how to implement it; and we will discuss potential 
middle-ground methods that are easier to implement 
and understand, are better than current practice, but 
they are not as rigorous as our ideal technique. 
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